Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Giant nanomachine aids the immune system: Theoretical chemistry

Lars Schäfer and his team use simulations to clarify the structure and dynamics of proteins. © RUB, Kramer
Lars Schäfer and his team use simulations to clarify the structure and dynamics of proteins. © RUB, Kramer

Abstract:
Cells that are infected by a virus or carry a carcinogenic mutation, for example, produce proteins foreign to the body. Antigenic peptides resulting from the degradation of these exogenous proteins inside the cell are loaded by the peptide-loading complex onto so-called major histocompatibility complex molecules (MHC for short) and presented on the cell surface. There, they are specifically identified by T-killer cells, which ultimately leads to the elimination of the infected cells. This is how our immune system defends us against pathogens.

Giant nanomachine aids the immune system: Theoretical chemistry

Bochum, Germany | Posted on August 28th, 2020

Machine operates with atomic precision

The peptide-loading complex ensures that the MHC molecules are correctly loaded with antigens. "The peptide-loading complex is a biological nanomachine that has to work with atomic precision in order to efficiently protect us against pathogens that cause disease," says Professor Lars Schäfer, Head of the Molecular Simulation research group at the Centre for Theoretical Chemistry at RUB.

In previous studies, other teams successfully determined the structure of the peptide-loading complex using cryo-electron microscopy, but only with a resolution of about 0.6 to 1.0 nanometres, i.e. not in atomic detail. Based on these experimental data, Schäfer's research team in collaboration with Professor Gunnar Schröder from Forschungszentrum Jülich has now succeeded in creating an atomic structure of the peptide-loading complex.

Exploring structure and dynamics

"The experimental structure is impressive. But only with our computer-based methods were we able to extract the maximum information content contained in the experimental data," explains Schröder. The atomic model enabled the researchers to perform detailed molecular dynamics computer simulations of the peptide-loading complex and thus to study not only the structure but also the dynamics of the biological nanomachine.

Since the simulated system is extremely large with its 1.6 million atoms, the computing time at the Leibnitz Supercomputing Centre in Munich aided this task considerably. "Using the high-performance computer, we were able to push into the microsecond time scale in our simulations. This revealed the role of sugar groups bound to the protein for the mechanism of peptide loading, which had previously only been incompletely understood," outlines Dr. Olivier Fisette, postdoc researcher at the Molecular Simulation research group.

Direct intervention in immune processes

The atomic model of the peptide-loading complex now facilitates further studies. For example, some viruses try to cheat our immune system by selectively switching off certain elements of the peptide-loading complex. "One feasible objective we'd like to pursue is the targeted intervention in these processes," concludes Schäfer.

###

Funding

The research was funded by the German Research Foundation as part of the Cluster of Excellence Ruhr Explores Solvation Resolv (EXC 2033).

####

For more information, please click here

Contacts:
Lars Schäfer

49-234-322-1582

@ruhrunibochum

Copyright © Ruhr-Universität Bochum

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication

Related News Press

News and information

Drawing data in nanometer scale September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Possible Futures

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Kavli Lectures: The art of building small and innovating for industrial impact August 7th, 2020

Nanomedicine

Cleveland researchers reveal new strategy to prevent blood clots without increasing the risk of bleeding: University Hospitals and Case Western Reserve University findings may be especially impactful for cancer patients who experience blood clot complications September 30th, 2022

Georgia State researchers discover novel way to treat IBD with lipid nanoparticles August 26th, 2022

Engineers fabricate a chip-free, wireless electronic “skin”: The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors – Signal transduction probably occurs after receptor enrichment August 19th, 2022

Discoveries

Surface microstructures of lunar soil returned by Chang’e-5 mission reveal an intermediate stage in space weathering process September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

Announcements

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Conformal optical black hole for cavity September 30th, 2022

Cleveland researchers reveal new strategy to prevent blood clots without increasing the risk of bleeding: University Hospitals and Case Western Reserve University findings may be especially impactful for cancer patients who experience blood clot complications September 30th, 2022

Ultrasmall VN/Co heterostructure with optimized N active sites anchored in N-doped graphitic nanocarbons for boosting hydrogen evolution September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

Nanobiotechnology

Cleveland researchers reveal new strategy to prevent blood clots without increasing the risk of bleeding: University Hospitals and Case Western Reserve University findings may be especially impactful for cancer patients who experience blood clot complications September 30th, 2022

Georgia State researchers discover novel way to treat IBD with lipid nanoparticles August 26th, 2022

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Engineers fabricate a chip-free, wireless electronic “skin”: The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project