Home > Press > Giant nanomachine aids the immune system: Theoretical chemistry
![]() |
Lars Schäfer and his team use simulations to clarify the structure and dynamics of proteins. © RUB, Kramer |
Abstract:
Cells that are infected by a virus or carry a carcinogenic mutation, for example, produce proteins foreign to the body. Antigenic peptides resulting from the degradation of these exogenous proteins inside the cell are loaded by the peptide-loading complex onto so-called major histocompatibility complex molecules (MHC for short) and presented on the cell surface. There, they are specifically identified by T-killer cells, which ultimately leads to the elimination of the infected cells. This is how our immune system defends us against pathogens.
Machine operates with atomic precision
The peptide-loading complex ensures that the MHC molecules are correctly loaded with antigens. "The peptide-loading complex is a biological nanomachine that has to work with atomic precision in order to efficiently protect us against pathogens that cause disease," says Professor Lars Schäfer, Head of the Molecular Simulation research group at the Centre for Theoretical Chemistry at RUB.
In previous studies, other teams successfully determined the structure of the peptide-loading complex using cryo-electron microscopy, but only with a resolution of about 0.6 to 1.0 nanometres, i.e. not in atomic detail. Based on these experimental data, Schäfer's research team in collaboration with Professor Gunnar Schröder from Forschungszentrum Jülich has now succeeded in creating an atomic structure of the peptide-loading complex.
Exploring structure and dynamics
"The experimental structure is impressive. But only with our computer-based methods were we able to extract the maximum information content contained in the experimental data," explains Schröder. The atomic model enabled the researchers to perform detailed molecular dynamics computer simulations of the peptide-loading complex and thus to study not only the structure but also the dynamics of the biological nanomachine.
Since the simulated system is extremely large with its 1.6 million atoms, the computing time at the Leibnitz Supercomputing Centre in Munich aided this task considerably. "Using the high-performance computer, we were able to push into the microsecond time scale in our simulations. This revealed the role of sugar groups bound to the protein for the mechanism of peptide loading, which had previously only been incompletely understood," outlines Dr. Olivier Fisette, postdoc researcher at the Molecular Simulation research group.
Direct intervention in immune processes
The atomic model of the peptide-loading complex now facilitates further studies. For example, some viruses try to cheat our immune system by selectively switching off certain elements of the peptide-loading complex. "One feasible objective we'd like to pursue is the targeted intervention in these processes," concludes Schäfer.
###
Funding
The research was funded by the German Research Foundation as part of the Cluster of Excellence Ruhr Explores Solvation Resolv (EXC 2033).
####
For more information, please click here
Contacts:
Lars Schäfer
49-234-322-1582
@ruhrunibochum
Copyright © Ruhr-Universität Bochum
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023
Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023
Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023
Possible Futures
Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023
Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023
Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Kavli Lectures: The art of building small and innovating for industrial impact August 7th, 2020
Nanomedicine
Nanonitrator: novel enhancer of inorganic nitrate protective effects, predicated on swarm learning approach May 12th, 2023
Nanobiotechnology: How Nanomaterials Can Solve Biological and Medical Problems April 14th, 2023
Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023
Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
Discoveries
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023
Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023
Announcements
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023
Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023
Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023
Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023
Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023
Nanobiotechnology
Nanonitrator: novel enhancer of inorganic nitrate protective effects, predicated on swarm learning approach May 12th, 2023
Nanobiotechnology: How Nanomaterials Can Solve Biological and Medical Problems April 14th, 2023
Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023
HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |