Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems

a) Trajectory of an enzyme-powered nanomotor prepared with lipase in a closed conformation and without controlled orientation during immobilization on the silicon nanoparticle surface. b) Trajectory of an enzyme-powered nanomotor prepared with lipase in an open conformation and with controlled orientation during immobilization on the silicon nanoparticle Surface. The central panel shows a scanning electron microscopy image of nanomotors like those used in the experiment.

CREDIT
CNIC/ IBEC
a) Trajectory of an enzyme-powered nanomotor prepared with lipase in a closed conformation and without controlled orientation during immobilization on the silicon nanoparticle surface. b) Trajectory of an enzyme-powered nanomotor prepared with lipase in an open conformation and with controlled orientation during immobilization on the silicon nanoparticle Surface. The central panel shows a scanning electron microscopy image of nanomotors like those used in the experiment. CREDIT CNIC/ IBEC

Abstract:
A study by scientists at the Centro Nacional de Investigaciones Cardiovasculares (CNIC), the Universidad Complutense (UCM), Universidad de Girona (UdG), and the Institute for Bioengineering of Catalonia (IBEC), working together with other international centers, has overcome one of the key hurdles to the use of nanorobots powered by lipases, enzymes that play essential roles in digestion by breaking down fats in foods so that they can be absorbed.

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems

Madrid, Spain | Posted on October 13th, 2020

The study was coordinated by Marco Filice of the CNIC Microscopy and Dynamic Imaging Unit--part of the ReDIB Infraestructura Científico Técnica Singular (ICTS)--, professor at Pharmacy Faculty (UCM) and ICREA Research Professor Samuel Sánchez of the IBEC. The article, published in the journal Angewandte Chemie International Edition, describes a tool for modulating motors powered by enzymes, broadening their potential biomedical and environmental applications.

Microorganisms are able to swim through complex environments, respond to their surroundings, and organize themselves autonomously. Inspired by these abilities, over the past 20 years scientists have managed to artificially replicate these tiny swimmers, first at the macro-micro scale and then at the nano scale, finding applications in environmental remediation and biomedicine.

"The speed, load-bearing capacity, and ease of surface functionalization of micro and nanomotors has seen recent research advances convert these devices into promising instruments for solving many biomedical problems. However, a key challenge to the wider use of these nanorobots is choosing an appropriate motor to propel them," explained Sánchez.

Over the past 5 years, the IBEC group has pioneered the use of enzymes to generate the propulsive force for nanomotors. "Bio-catalytic nanomotors use biological enzymes to convert chemical energy into mechanical force, and this approach has sparked great interest in the field, with urease, catalase, and glucose oxidase among the most frequent choices to power these tiny engines," said Sánchez.

The CNIC group is a leader in the structural manipulation and immobilization of lipase enzymes on the surface of different nanomaterials. Lipases make excellent nanomotor components because their catalytic mechanism involves major conformational changes between an open, active form and a closed,

"In this project, we investigated the effect of modulating the catalytic activity of lipase enzymes to propel silicon-based nanoparticles," explained Filice.

In addition to the 3-dimensional conformation of the enzyme, the team also investigated how controlling the orientation of the enzyme during its immobilization on the nanomotor surface affects its catalytic activity and therefore the propulsion of the nanorobots.

The researchers chemically modified the surface of silicon nanoparticles to generate three specific combinations of lipase conformations and orientations during immobilization: 1) open conformation plus controlled orientation; 2) closed conformation plus uncontrolled orientation; 3) a situation intermediate between 1 and 2.

The team analyzed the three types of nanorobot with spectroscopic techniques, assays to assess catalytic parameters related to enzyme activity, Dynamic Molecular simulations (performed by Professor Silvia Osuna's team at UdG), and direct tracking of individual nanomotor trajectories by microscopy techniques. "The results demonstrate that combining an open enzyme conformation with a specific orientation on the nanomotor is critical to achieving controlled propulsion."

####

For more information, please click here

Contacts:
Fátima Lois

34-639-282-477

@CNIC_CARDIO

Copyright © Centro Nacional de Investigaciones Cardiovasculares

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Imaging

Bruker Launches Advanced In-Situ Nanomechanical Test Instrument for Analyzing Materials Deformation in Electron Microscopes: Hysitron PI 89 SEM PicoIndenter Offers Unprecedented Range and Flexibility October 15th, 2020

Graphene microbubbles make perfect lenses: New method generates precisely controlled graphene microbubbles with perfectly spherical curvature for lenses October 9th, 2020

Engineers produce a fisheye lens that's completely flat: The single piece of glass produces crisp panoramic images September 22nd, 2020

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Robotics

HKU Engineering team develops novel miniaturised organic semiconductor: An important breakthrough essential for future flexible electronic devices October 8th, 2020

Materials scientists learn how to make liquid crystal shape-shift September 25th, 2020

Possible Futures

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Molecular Machines

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Kavli Lectures: The art of building small and innovating for industrial impact August 7th, 2020

Polymers self-assembling like links of a chain for innovative materials: Nature just published the research on unprecedented "Self-assembled poly-catenanes" July 16th, 2020

DNA origami to scale-up molecular motors June 13th, 2019

Molecular Nanotechnology

DNA origami to scale-up molecular motors June 13th, 2019

Big energy savings for tiny machines May 24th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Nanomedicine

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

New drug carrier systems: University of Delaware researchers advance drug delivery systems to treat connective tissue disorders October 9th, 2020

HKU Engineering team develops novel miniaturised organic semiconductor: An important breakthrough essential for future flexible electronic devices October 8th, 2020

'Like a fishing net,' nanonet collapses to trap drug molecule: New method presents possibilities for rapidly making and testing vaccine formulations October 6th, 2020

Discoveries

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

Surface waves can help nanostructured devices keep their cool October 12th, 2020

Announcements

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

GLOBALFOUNDRIES Accelerating Innovation in IoT and Wearables with Adaptive Body Bias Feature on 22FDX Platform October 16th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Making disorder for an ideal battery: Manufacturing safer, more powerful batteries that use geopolitically stable resources requires solid electrolytes and replacing lithium with sodium. A chemical solution is now being offered to battery developers. October 16th, 2020

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

Tools

Bruker Launches Advanced In-Situ Nanomechanical Test Instrument for Analyzing Materials Deformation in Electron Microscopes: Hysitron PI 89 SEM PicoIndenter Offers Unprecedented Range and Flexibility October 15th, 2020

New NIST project to build nano-thermometers could revolutionize temperature imaging: Cheaper refrigerators? Stronger hip implants? A better understanding of human disease? All of these could be possible October 9th, 2020

Graphene microbubbles make perfect lenses: New method generates precisely controlled graphene microbubbles with perfectly spherical curvature for lenses October 9th, 2020

Graphene detector reveals THz light's polarization October 8th, 2020

Nanobiotechnology

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

New drug carrier systems: University of Delaware researchers advance drug delivery systems to treat connective tissue disorders October 9th, 2020

'Like a fishing net,' nanonet collapses to trap drug molecule: New method presents possibilities for rapidly making and testing vaccine formulations October 6th, 2020

GLOBALFOUNDRIES and Movano Inc. Partner to Advance Needle-Free Continuous Glucose Monitoring Technology: Manufactured on GF’s 22FDX platform, Movano’s radio frequency-enabled solution will help individuals to manage their glucose levels anywhere, anytime October 1st, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project