Home > Press > Graphene nanotubes provide a shortcut to add conductivity to powder coatings
![]() |
Abstract:
•Erie Powder Coatings has developed powder coatings with graphene nanotubes for EMI and RFI applications.
•The new products demonstrate both conductive and static dissipative properties in combination with aesthetic performance in a variety of surface textures and colors.
•The solution is being recognized for its excellent price-per-performance ratio, along with graphene nanotubes’ superior environmental compliance and the full range of properties they enable in coatings.
Many types of equipment may be adversely affected by radiated interference, known as electromagnetic interference (EMI) and radio frequency interference (RFI), therefore a conductive coating should be applied to protect sensitive electronic equipment. An antistatic additive is the key ingredient that enables conductivity in coatings. While most additives on the market are able to provide the required resistivity, there can be significant drawbacks.
A leading Canadian producer in its field, Erie Powder Coatings, has developed a variety of powder coatings using OCSiAl’s TUBALL graphene nanotubes. The new products demonstrate both conductive and static dissipative properties with resistance ranging from 103 Ω/sq to 109 Ω/sq. Initial laboratory tests showed positive results in combining the targeted conductivity with aesthetic performance in a variety of surface textures and colors. “Traditionally formulated high conductivity powder systems rely on conductive carbon black, which limits pigmentation options. By switching to a graphene nanotube system requiring lower dosage levels, a significantly wider range of color options are available,” said Tyler Siska, Erie Powder Coatings Research & Development Manager.
Graphene nanotube concentrates are introduced at the premixing stage. Standard powder coating production extrusion technology is used to incorporate the nanotubes with no special adaptation. Thanks to their unique morphology, nanotubes build a uniform conductive, reinforcing network inside material with no increase in melt viscosity. The unmatched ultra-low working dosage allows producers to expand the range of product colors and gives greater flexibility in the final formulation.
“Due to the ultra-low working dosages of graphene nanotubes that start from 0.01%, our clients globally recognize the excellent price-per-performance ratio of TUBALL nanotubes, along with nanotubes’ better environmental compliance and the full range of properties they enable in coatings,” said Sergey Zasukhin, OCSiAl Business Development Director for Canada, Mexico, Central and South Americas.
Compatible with most engineering plastics and metal substrates, sprayable electrically conductive powder coatings with graphene nanotubes are highly welcomed in electrostatic sensitive applications in ATEX hazardous environments, instrumentation, medical, marine, aviation, and defense industries.
####
About OCSiAl Group
Learn more on graphene nanotubes in powder coatings at tuball.com.
For more information, please click here
Contacts:
Anastasia Zirka
Senior PR & Advertising Manager
OCSiAl Group
+7 913 989 9239
Copyright © OCSiAl Group
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Single quantum bit achieves complex systems modeling June 9th, 2023
Quantum materials: Electron spin measured for the first time June 9th, 2023
Liquid metal sticks to surfaces without a binding agent June 9th, 2023
Graphene-based Carbocatalysts: Synthesis, Properties, and Applications—Beyond Boundaries June 9th, 2023
Graphene/ Graphite
Graphene-based Carbocatalysts: Synthesis, Properties, and Applications—Beyond Boundaries June 9th, 2023
Wireless/telecommunications/RF/Antennas/Microwaves
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022
Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022
Quantum network nodes with warm atoms June 24th, 2022
Coatings
Graphene nanotubes offer an efficient replacement for carbon additives in conductive electrical heating paints November 3rd, 2021
Primers with graphene nanotubes offer a new solution for electrostatic painting of automotive parts July 16th, 2021
Expanding the freedom of design: powder coating on FRP thanks to conductive gelcoats with graphene nanotubes March 3rd, 2021
First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020
Possible Futures
USTC enhances fluorescence brightness of single silicon carbide spin color centers June 9th, 2023
Single quantum bit achieves complex systems modeling June 9th, 2023
Advances in nanotechnology application in biosafety materials A crucial response to COVID-19 pandemic June 9th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Nanotubes/Buckyballs/Fullerenes/Nanorods
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
Announcements
Liquid metal sticks to surfaces without a binding agent June 9th, 2023
Graphene-based Carbocatalysts: Synthesis, Properties, and Applications—Beyond Boundaries June 9th, 2023
When all details matter -- Heat transport in energy materials June 9th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |