Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene nanotubes provide a shortcut to add conductivity to powder coatings

Abstract:
•Erie Powder Coatings has developed powder coatings with graphene nanotubes for EMI and RFI applications.
•The new products demonstrate both conductive and static dissipative properties in combination with aesthetic performance in a variety of surface textures and colors.
•The solution is being recognized for its excellent price-per-performance ratio, along with graphene nanotubes’ superior environmental compliance and the full range of properties they enable in coatings.

Graphene nanotubes provide a shortcut to add conductivity to powder coatings

Luxembourg | Posted on October 1st, 2021

Many types of equipment may be adversely affected by radiated interference, known as electromagnetic interference (EMI) and radio frequency interference (RFI), therefore a conductive coating should be applied to protect sensitive electronic equipment. An antistatic additive is the key ingredient that enables conductivity in coatings. While most additives on the market are able to provide the required resistivity, there can be significant drawbacks.



A leading Canadian producer in its field, Erie Powder Coatings, has developed a variety of powder coatings using OCSiAl’s TUBALL graphene nanotubes. The new products demonstrate both conductive and static dissipative properties with resistance ranging from 103 Ω/sq to 109 Ω/sq. Initial laboratory tests showed positive results in combining the targeted conductivity with aesthetic performance in a variety of surface textures and colors. “Traditionally formulated high conductivity powder systems rely on conductive carbon black, which limits pigmentation options. By switching to a graphene nanotube system requiring lower dosage levels, a significantly wider range of color options are available,” said Tyler Siska, Erie Powder Coatings Research & Development Manager.



Graphene nanotube concentrates are introduced at the premixing stage. Standard powder coating production extrusion technology is used to incorporate the nanotubes with no special adaptation. Thanks to their unique morphology, nanotubes build a uniform conductive, reinforcing network inside material with no increase in melt viscosity. The unmatched ultra-low working dosage allows producers to expand the range of product colors and gives greater flexibility in the final formulation.



“Due to the ultra-low working dosages of graphene nanotubes that start from 0.01%, our clients globally recognize the excellent price-per-performance ratio of TUBALL nanotubes, along with nanotubes’ better environmental compliance and the full range of properties they enable in coatings,” said Sergey Zasukhin, OCSiAl Business Development Director for Canada, Mexico, Central and South Americas.



Compatible with most engineering plastics and metal substrates, sprayable electrically conductive powder coatings with graphene nanotubes are highly welcomed in electrostatic sensitive applications in ATEX hazardous environments, instrumentation, medical, marine, aviation, and defense industries.

####

About OCSiAl Group
Learn more on graphene nanotubes in powder coatings at tuball.com.

For more information, please click here

Contacts:
Anastasia Zirka
Senior PR & Advertising Manager
OCSiAl Group
+7 913 989 9239

Copyright © OCSiAl Group

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Wireless/telecommunications/RF/Antennas/Microwaves

Quantum network nodes with warm atoms June 24th, 2022

Nanoscale bowtie antenna under optical and electrical excitations June 3rd, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

News and information

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Graphene/ Graphite

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

Coatings

Graphene nanotubes offer an efficient replacement for carbon additives in conductive electrical heating paints November 3rd, 2021

Primers with graphene nanotubes offer a new solution for electrostatic painting of automotive parts July 16th, 2021

Expanding the freedom of design: powder coating on FRP thanks to conductive gelcoats with graphene nanotubes March 3rd, 2021

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Possible Futures

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

CEA and Startup C12 Join Forces to Develop Next-Generation Quantum Computers with Multi-Qubit Chips at Wafer Scale March 25th, 2022

Announcements

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project