Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIEHS Awards Recovery Act Funds to Focus More Research on Health and Safety of Nanomaterials

Abstract:
The National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health, is increasing its investment in understanding the potential health, safety and environmental issues related to tiny particles that are used in many everyday products such as sunscreens, cosmetics and electronics. The NIEHS will award about $13 million over a two-year period, through the American Recovery and Reinvestment Act, to bolster the NIEH's ongoing research portfolio in the area of engineered nanomaterials (ENMs).

NIEHS Awards Recovery Act Funds to Focus More Research on Health and Safety of Nanomaterials

Bethesda, MD | Posted on November 19th, 2009

Engineered nanomaterials are very tiny materials about 100,000 times smaller than a single strand of hair. They represent a significant breakthrough in material design and development for industry and consumer products, including stain-resistant clothing, pesticides, tires, and electronics, as well as in medicine for purposes of diagnosis, imaging and drug delivery.

"We currently know very little about nanoscale materials' effect on human health and the environment," said Linda Birnbaum, Ph.D., director of the NIEHS and the National Toxicology Program (NTP), an interagency program for the U.S. Department of Health and Human Services. "Nanomaterials come in so many shapes and sizes, with each one having different chemical properties and physical and surface characteristics. They are tricky materials to get a handle on. The same properties that make nanomaterials so potentially beneficial in drug delivery and product development are some of the same reasons we need to be cautious about their presence in the environment."

The NIEHS has awarded 13 new two-year grants through the Recovery Act to develop better methods to assess exposure and health effects associated with nanomaterials. Ten of the grants were awarded through the NIH Grand Opportunities program announced in March 2009 (1) and three were funded from the NIH Challenge Grants program. All 13 are aimed at developing reliable tools and approaches to determine the impact on biological systems and health outcomes of engineered materials.

The new awards focus on ensuring that we have reliable and reproducible methods and models to assess exposure, exposure metrics, and biological response to nanomaterials. This research is also essential for the harmonization of research results and forming a scientifically sound basis for hazard assessment, as well as the safe design and development of ENMs.

"There are inconsistencies in the biological effects of ENMs reported in the scientific literature, and a major reason for this is lack of detailed characterization of the physical and chemical properties of the ENMs used in these studies," said Sri Nadadur, Ph.D., program administrator at the NIEHS. "One of our goals is to identify three or four reliable and reproducible test methods using the same ENMs by investigators across different labs."

To accomplish this, the NIEHS brought 36 investigators together on Oct. 20, 2009 in North Carolina, where the NIEHS is headquartered, to identify ENMs, assays and test systems to be utilized in these investigations in a more coordinated and integrated effort.

The NIEHS is establishing an integrated program that will narrow its focus to identify the best methods to evaluate the health effects of nanomaterials through use of cell cultures and animal systems. After the initial meeting, grantees will meet face-to-face twice a year to share information, evaluate progress and determine next steps.

"Recovery Act funds have allowed us to expand our efforts in this important area," said Sally Tinkle, Ph.D., senior science sdvisor at the NIEHS. "We want to be sure that we come away with some better tools to assess the health and safety of nanomaterials." This NIEHS effort focused on nanomaterials supports the goals identified by the National Nanotechnology Initiative Strategy for Nanotechnology-related Environmental, Health, and Safety Research.

In addition to Recovery Act funding, the NIEHS supports grantees across the country working on issues related to nanotechnology. The NIEHS extramural activities are focused on three main areas:

* The application of nanotechnologies in environmental health research through use of nanomaterials to improve measurements of exposure to other environmental factors, enabling research into the biological effects of exposures and improving therapeutic strategies to reverse the harmful effects of environmental exposures.
* Understanding the risks associated with accidental or intentional exposure to nanomaterials.
* Through the Superfund Research Program which authorizes NIH to fund university-based research to conduct the science needed for human health risk assessment and decision-making for remediation of hazardous waste sites, researchers across the country are looking at both the application of nanomaterials for environmental monitoring and remediation, and the health implications associated with their application.

On November 4, 2009, the NIEHS announced a new funding opportunity to address the potential health implications of ENMs. The Request for Applications entitled Engineered Nanomaterials: Linking Physical and Chemical Properties to Biology can be found at grants.nih.gov/grants/guide/rfa-files/RFA-ES-09-011.html.

The NIEHS also administers the National Toxicology Program, which is researching the potential human health hazards associated with the manufacture and use of nanomaterials.

The 10 Recovery Act NIH Grand Opportunities grants focusing on engineered nanomaterial safety have been awarded to:

* James Christopher Bonner, North Carolina State University, Raleigh
* Edward David Crandall, University of Southern California, Los Angeles
* Alison Cory Pearson Elder and Gunter Oberdorster, University of Rochester, N.Y.
* Andrij Holian, University of Montana, Missoula
* Andre Elias Nel, University of California, Los Angeles
* Galya Orr, Battelle Pacific Northwest Laboratories, Richland, Wash.
* Christopher D. Vulpe, University of California, Berkeley
* Paul K. Westerhoff, Arizona State University, Tempe
* Frank A. Witzmann and Somenath Mitra, Indiana University, Indianapolis
* Robert M. Worden, Michigan State University, East Lansing

The three Recovery Act Nanotechnology NIH Challenge Grants have been awarded to:

* Kent E. Pinkerton, University of California, Davis
* Timothy R. Nurkiewicz, West Virginia University, Morgantown
* Wynne K. Schiffer, Feinstein Institute for Medical Research, Morgantown, W.Va.

The NIEHS also used Recovery Act funds to support efforts under its Superfund Research Program to determine ways to apply nanotechnology to better detect and evaluate effects on human health, and clean up Superfund chemicals in the environment. The Superfund Worker Education Training Program also provided Recovery Act funding targeting health and safety training.

(1) www.niehs.nih.gov/recovery/nanomaterial-go.cfm

####

About National Institute of Environmental Health Sciences (NIEHS),
The NIEHS supports research to understand the effects of the environment on human health and is part of NIH.

The National Institutes of Health (NIH) The Nation's Medical Research Agency includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

For more information, please click here

Contacts:
Robin Mackar
919-541-0073

Copyright © National Institute of Environmental Health Sciences (NIEHS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Imaging

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Preparing for Nano

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

Durnham University's DEEPEN project comes to a close September 26th, 2012

Technical Seminar at ANFoS 2012 August 22nd, 2012

Nanotechnology shows we can innovate without economic growth April 12th, 2012

Products

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 14th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 10th, 2016

PEN Inc. Announces Strategy to Broaden Clarity Branded Products Business February 4th, 2016

Graphenea increases capacity, reduces prices January 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Nanomedicine

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Nanoelectronics

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Materials/Metamaterials

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Announcements

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Environment

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

Atomically thin sensor detects harmful air pollution in the home April 18th, 2016

Catalyst could make production of key chemical more eco-friendly April 10th, 2016

Nanoporous material's strange "breathing" behavior April 7th, 2016

Automotive/Transportation

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Heat and light get larger at the nanoscale: Columbia-led research team first to demonstrate a strong, non-contact heat transfer channel using light with performances that could lead to high efficiency electricity generation April 2nd, 2016

Textiles/Clothing

The impact of anti-odor clothing on the environment March 31st, 2016

No more washing: Nano-enhanced textiles clean themselves with light: New technique to grow nanostructures that degrade organic matter when exposed to light March 23rd, 2016

Stretchable electronics that quadruple in length March 4th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Industrial

Novel anti-biofilm nano coating developed at Ben-Gurion U.: Offers significant anti-adhesive potential for a variety of medical and industrial applications April 25th, 2016

Model aids efforts to reduce cost of carbon nanostructures for industry, research April 5th, 2016

Molecular-scale ALD discovery could have industrial-sized impact: New atomic layer deposition technique reduces waste March 31st, 2016

Transparent wood could one day help brighten homes and buildings March 31st, 2016

Personal Care

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

New ORNL method could unleash solar power potential March 16th, 2016

Ceapro Presents Unique Advantages of Its Disruptive Pressurized Gas Expanded Technology (PGX) at 2015 Composites at Lake Louise November 10th, 2015

Nanofilm Introduces Clarity AR Lens Cleaner for Anti-Reflective Superhydrophobic Lenses August 20th, 2015

Safety-Nanoparticles/Risk management

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

The impact of anti-odor clothing on the environment March 31st, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Microagents with revolutionary potential March 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic