Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip

Semiconductor quantum chip with quantum bus of the JARA cooperation of Forschungszentrum Jülich and RWTH Aachen University
CREDIT
Forschungszentrum Jülich / Sascha Kreklau
Semiconductor quantum chip with quantum bus of the JARA cooperation of Forschungszentrum Jülich and RWTH Aachen University CREDIT Forschungszentrum Jülich / Sascha Kreklau

Abstract:
Millions of quantum bits are required for quantum computers to prove useful in practical applications. The scalability is one of the greatest challenges in the development of future devices. One problem is that the qubits have to be very close to each other on the chip in order to couple them together. Researchers at Forschungszentrum Jülich and RWTH Aachen University have now come a significant step closer to solving the problem. They succeeded in transferring electrons, the carriers of quantum information, over several micrometres on a quantum chip. Their "quantum bus" could be the key component to master the leap to millions of qubits.

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip

Juelich, Germany | Posted on September 23rd, 2022

Quantum computers have the potential to vastly exceed the capabilities of conventional computers for certain tasks. But there is still a long way to go before they can help to solve real-world problems. Many applications require quantum processors with millions of quantum bits. Today’s prototypes merely come up with a few of these compute units.

"Currently, each individual qubit is connected via several signal lines to control units about the size of a cupboard. That still works for a few qubits. But it no longer makes sense if you want to put millions of qubits on the chip. Because that' s necessary for quantum error correction," says Dr. Lars Schreiber from the JARA Institute for Quantum Information at Forschungszentrum Jülich and RWTH Aachen University.

At some point, the number of signal lines becomes a bottleneck. The lines take up too much space compared to the size of the tiny qubits. And a quantum chip cannot have millions of inputs and outputs - a modern classical chip only contains about 2000 of these. Together with colleagues at Forschungszentrum Jülich and RWTH Aachen University, Schreiber has been conducting research for several years to find a solution to this problem.

Their overall goal is to integrate parts of the control electronics directly on the chip. The approach is based on so-called semiconductor spin qubits made of silicon and germanium. This type of qubit is comparatively tiny. The manufacturing processes largely match those of conventional silicon processors. This is considered to be advantageous when it comes to realising very many qubits. But first, some fundamental barriers have to be overcome.

"The natural entanglement that is caused by the proximity of the particles alone is limited to a very small range, about 100 nanometres. To couple the qubits, they currently have to be placed very close to each other. There is simply no space for additional control electronics that we would like to install there," says Schreiber.

To set the qubits apart, the JARA Institute for Quantum Information (IQI) came up with the idea of a quantum shuttle. This special component should help to exchange quantum information between the qubits over greater distances. The researchers have been working on the "quantum bus" for five years and have already filed more than 10 patents. The research began as part of the European QuantERA consortium Si-QuBus and is now being continued in the national project QUASAR of the Federal Ministry of Education and Research (BMBF) together with industrial partners.

"About 10 micrometres have to be bridged from one qubit to the next. According to theory, millions of qubits can be realized with such an architecture. We recently predicted this in collaboration with circuit engineers from the Central Institute for Engineering, Electronics and Analytics at Forschungszentrum Jülich," explains IQI Institute Director Prof. Hendrik Bluhm. Researchers at TU Delft and Intel have also come to this same conclusion.

An important step has now been achieved by Lars Schreiber and his team. They succeeded in transporting an electron 5000 times over a distance of 560 nanometres without any significant errors. This corresponds to a distance of 2.8 millimetres. The results were published in the scientific journal npj Quantum Information.

„Surfing“ electrons

One essential improvement: the electrons are driven by means of four simple control signals, which – in contrast to previous approaches – do not become more complex over longer distances. This is important because otherwise extensive control electronics would be required, which would take up too much space – or could not be integrated on the chip at all.

This achievement is based on a new way of transporting electrons. "Until now, people have tried to steer the electrons specifically around individual disturbances on their path. Or they created a series of so-called quantum dots and let the electrons hop from one of these dots to another. Both approaches require precise signal adjustment, which results in too complex control electronics," explains Lars Schreiber. "In contrast, we generate a potential wave on which the electrons simply surf over various sources of interference. A few control signals are sufficient for such a uniform wave; four sinusoidal pulses is all it takes."

As a next step, the physicists now want to show that the qubit information encoded in the electron spin is not lost during transportation. Theoretical calculations have already shown that this is possible in silicon in certain speed ranges. The quantum bus thus paves the way to a scalable quantum computer architecture that can also serve as a basis for several million qubits.

####

For more information, please click here

Contacts:
Tobias Schloesser
Forschungszentrum Juelich

Office: +49-246-161-4771

Expert Contacts

Prof. Hendrik Bluhm
Forschungszentrum Jülich, JARA-Institute Quantum Information (PGI-11)


Dr. Lars Schreiber
Forschungszentrum Jülich, JARA-Institute Quantum Information (PGI-11)

Copyright © Forschungszentrum Juelich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

Quantum Physics

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Quantum Computing

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Quantum nanoscience

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project