Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Programmable materials find strength in molecular repetition

Digital Image Correlation shows fracture of a synthethic protein sample.

Image: Reginald Hamilton / Penn State
Digital Image Correlation shows fracture of a synthethic protein sample.

Image: Reginald Hamilton / Penn State

Abstract:
Synthetic proteins based on those found in a variety of squid species' ring teeth may lead the way to self-healing polymers carefully constructed for specific toughness and stretchability that might have applications in textiles, cosmetics and medicine, according to Penn State researchers.



Short repetitive protein vs. long repetitive protein

Credit:Melik Demirel / Penn State

Programmable materials find strength in molecular repetition

University Park, PA | Posted on May 23rd, 2016

"We looked at what is common among squid teeth proteins for all species of squid we studied," said Abdon Pena-Francesch, graduate student in engineering science and mechanics. "We observed which properties changed dramatically for each set of proteins."

Huihun Jung, a Ph.D. student in Melik Demirel's lab group, looked at four squid species from around the world -- Hawaiian bobtail squid, long-finned squid, European squid and Japanese flying squid.

"It was a mystery why nature uses more than one protein to make the ring teeth in the suckers," said Demirel, professor of engineering science and mechanics. "Why did we need so many? It turns out that each has different mechanical properties."

The proteins in ring teeth are semicrystalline, a combination of crystalline and amorphous pieces. The natural proteins also have varying repeats, amino acid strings that repeat themselves once or many times. These repeats alter the lengths of the protein. However, a clear understanding of the function of these repeats was not known.

After sequencing the various squid proteins, the researchers put together a variety of synthetic ring teeth proteins with varying numbers of repeats. They report their results in the current online issue of the Proceedings of the National Academy of Sciences.

"There has been a lot of work done making structures to mimic proteins," said Demirel, who is also a member of the Huck Institutes of the Life Sciences. "People have looked at the structure of proteins in silk, the elastin in skin, the resilin in insect wings and collagen in a large set of structures, but no one has looked at squid in this way. Squid mimics have not been done before."

Together with Benjamin Allen, research associate in biochemistry and molecular biology and the Huck Institutes, the Demirel group made varying lengths of amino acid strings -- polypeptides -- and found that in the synthetic material, toughness and extensibility increase as the molecular weight increases. The longer the polypeptide chain, the greater the molecular weight. They also found that the balance between elasticity -- how much the material will stretch without deforming -- and plasticity -- the point at which it will deform -- remained unchanged.

"We can control which amino acids we use, so we can control the molecular weights," said Pena-Francesch. "We can design each segment and see what fundamentals of mechanics apply."

The researchers suggest that "the repetitions in native squid proteins could have a genetic advantage for increased toughness and flexibility."

"We found that the shortest polypeptide chains were brittle," said Demirel. "As they get longer, they are stretchy."

The structural properties in this material are highly programmable. Extremely elastic materials, like the amorphous portion of these proteins, absorb energy and are useful in things like automobile bumpers, while the crystalline portion acts like a spring and is more like the material in a car's dashboard. The proper balance of each could provide the desired materials characteristics.

Their building blocks, the synthetic amino acids, are produced by bacteria so that harvesting of live squid is no longer necessary. Also, the synthetic materials are self-healing, so small cracks and breaks can be repaired. Demirel and his team note that the synthetic mimic of the squid ring teeth proteins can be processed to form a variety of 3-dimensional shapes including ribbons, lithographic patterns and nanotubes with a vast array of potential uses.

###

Also working on this project were Reginald F. Hamilton, assistant professor in engineering science and mechanics and the Materials Research Institute; Alham Saadat and Aswathy Sebastian, technicians in biochemistry and molecular biology and the Huck Institutes; Istvan Albert, professor of bioinformatics and member of the Huck Institutes; and Dong Hwan Kim, undergraduate in biology. The researchers have filed a preliminary patent application on this work.

The Office of Naval Research and the Army Research Office.

####

For more information, please click here

Contacts:
A'ndrea Elyse Messer

814-865-9481

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Videos/Movies

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Possible Futures

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Nanomedicine

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Discoveries

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Materials/Metamaterials

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Announcements

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Patents/IP/Tech Transfer/Licensing

Nanoparticles limit damage in spinal cord injury: Injection after an injury reduces inflammation and scarring September 6th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

Military

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Textiles/Clothing

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Carbodeon demonstrates NanoDiamond nickel coatings with enhanced tribological properties June 7th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Personal Care/Cosmetics

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

New ORNL method could unleash solar power potential March 16th, 2016

Ceapro Presents Unique Advantages of Its Disruptive Pressurized Gas Expanded Technology (PGX) at 2015 Composites at Lake Louise November 10th, 2015

Nanobiotechnology

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project