Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time

A discovery by Rice University engineers brings efficient, stable bilayer perovskite solar cells closer to commercialization. The cells are about a micron thick, with 2D and 3D layers.
CREDIT
Jeff Fitlow/Rice University
A discovery by Rice University engineers brings efficient, stable bilayer perovskite solar cells closer to commercialization. The cells are about a micron thick, with 2D and 3D layers. CREDIT Jeff Fitlow/Rice University

Abstract:
Rice University engineers say they’ve solved a long-standing conundrum in making stable, efficient solar panels out of halide perovskites.



Produced by Brandon Martin/Rice University

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time

Houston, TX | Posted on September 23rd, 2022

It took finding the right solvent design to apply a 2D top layer of desired composition and thickness without destroying the 3D bottom one (or vice versa). Such a cell would turn more sunlight into electricity than either layer on its own, with better stability.

Chemical and biomolecular engineer Aditya Mohite and his lab at Rice’s George R. Brown School of Engineeringreported in Science their success at building thin 3D/2D solar cells that deliver a power conversion efficiency of 24.5%.

That’s as efficient as most commercially available solar cells, Mohite said.

“This is really good for flexible, bifacial cells where light comes in from both sides and also for back-contacted cells,” he said. “The 2D perovskites absorb blue and visible photons, and the 3D side absorbs near-infrared.”

Perovskites are crystals with cubelike lattices known to be efficient light harvesters, but the materials tend to be stressed by light, humidity and heat. Mohite and many others have worked for years to make perovskite solar cells practical.

The new advance, he said, largely removes the last major roadblock to commercial production.

“This is significant at multiple levels,” Mohite said. “One is that it’s fundamentally challenging to make a solution-processed bilayer when both layers are the same material. The problem is they both dissolve in the same solvents.

“When you put a 2D layer on top of a 3D layer, the solvent destroys the underlying layer,” he said. “But our new method resolves this.”

Mohite said 2D perovskite cells are stable, but less efficient at converting sunlight. 3D perovskites are more efficient but less stable. Combining them incorporates the best features of both.

“This leads to very high efficiencies because now, for the first time in the field, we are able to create layers with tremendous control,” he said. “It allows us to control the flow of charge and energy for not only solar cells but also optoelectronic devices and LEDs.”

The efficiency of test cells exposed to the lab equivalent of 100% sunlight for more than 2,000 hours “does not degrade by even 1%,” he said. Not counting a glass substrate, the cells were about 1 micron thick.

Solution processing is widely used in industry and incorporates a range of techniques — spin coating, dip coating, blade coating, slot die coating and others — to deposit material on a surface in a liquid. When the liquid evaporates, the pure coating remains.

The key is a balance between two properties of the solvent itself: its dielectric constant and Gutmann donor number. The dielectric constant is the ratio of the electric permeability of the material to its free space. That determines how well a solvent can dissolve an ionic compound. The donor number is a measure of the electron-donating capability of the solvent molecules.

“If you find the correlation between them, you’ll find there are about four solvents that allow you to dissolve perovskites and spin-coat them without destroying the 3D layer,” Mohite said.

He said their discovery should be compatible with roll-to-roll manufacturing that typically produces 30 meters of solar cell per minute.

“This breakthrough is leading, for the first time, to perovskite device heterostructures containing more than one active layer,” said co-author Jacky Even, a professor of physics at the National Institute of Science and Technology in Rennes, France. “The dream of engineering complex semiconductor architectures with perovskites is about to come true. Novel applications and the exploration of new physical phenomena will be the next steps.”

“This has implications not just for solar energy but also for green hydrogen, with cells that can produce energy and convert it to hydrogen,” Mohite said. “It could also enable non-grid solar for cars, drones, building-integrated photovoltaics or even agriculture.”

Rice graduate student Siraj Sidhik is lead author of the paper. Rice-affiliated co-authors are exchange student Yafei Wang; graduate students Andrew Torma, Xinting Shuai, Wenbin Li and Ayush Agarwal; research scientists Tanguy Terlier and Anand Puthirath; Matthew Jones, the Norman and Gene Hackerman Assistant Professor in Chemistry and Materials Science and NanoEngineering; and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of materials science and nanoengineering, chemistry, and chemical and biomolecular engineering. Other co-authors are postdoctoral researcher Michael De Siena and Mercouri Kanatzidis, a professor of chemistry, of Northwestern University; alumnus Reza Asadpour and Muhammad Ashraful Alam, the Jai N. Gupta Professor of Electrical and Computer Engineering, of Purdue University; postdoctoral researcher Kevin Ho, research scientist Rajiv Giridharagopal and David Ginger, the B. Seymour Rabinovitch Endowed Chair in Chemistry, of the University of Washington, Seattle; researchers Boubacar Traore and Claudine Katan of the University of Rennes; and Joseph Strzalka, a physicist at Argonne National Laboratory.

The Department of Energy Efficiency and Renewable Energy program (0008843), the Academic Institute of France, the European Union’s Horizon 2020 research and innovation program (861985), the Office of Naval Research (N00014-20-1-2725), Argonne National Laboratory (DE-AC02- 06CH11357), the National Science Foundation (1626418, 1719797) and the Department of Energy (DE-SC0013957).

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 4,240 undergraduates and 3,972 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.


Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
Mike Williams
Rice University

Office: 713-348-6728

Jeff Falk
Rice University

Office: 713-348-6775

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

Single quantum bit achieves complex systems modeling June 9th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Graphene-based Carbocatalysts: Synthesis, Properties, and Applications—Beyond Boundaries June 9th, 2023

Perovskites

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

Efficient heat dissipation perovskite lasers using a high-thermal-conductivity diamond substrate April 14th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Polymer p-doping improves perovskite solar cell stability January 20th, 2023

Laboratories

Novel microscope developed to design better high-performance batteries: Innovation gives researchers inside view of how batteries work February 10th, 2023

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Rutgers researchers develop method with single-molecule precision to engineer enzyme ‘stickiness’: The method aids in optimizing enzymes or proteins ‘stickiness’ for diverse biotechnological applications October 14th, 2022

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Zinc transporter has built-in self-regulating sensor: New cryo-EM structure of a zinc-transporter protein reveals how this molecular machine functions to regulate cellular levels of zinc, an essential micronutrient June 9th, 2023

Breaking through the limits of stretchable semiconductors with molecular brakes that harness light June 9th, 2023

Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023

With new experimental method, researchers probe spin structure in 2D materials for first time: By observing spin structure in “magic-angle” graphene, a team of scientists led by Brown University researchers have found a workaround for a long-standing roadblock in the field of two May 12th, 2023

Possible Futures

USTC enhances fluorescence brightness of single silicon carbide spin color centers June 9th, 2023

Single quantum bit achieves complex systems modeling June 9th, 2023

Advances in nanotechnology application in biosafety materials A crucial response to COVID-19 pandemic June 9th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Discoveries

Zinc transporter has built-in self-regulating sensor: New cryo-EM structure of a zinc-transporter protein reveals how this molecular machine functions to regulate cellular levels of zinc, an essential micronutrient June 9th, 2023

When all details matter -- Heat transport in energy materials June 9th, 2023

Advances in nanotechnology application in biosafety materials A crucial response to COVID-19 pandemic June 9th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Announcements

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Graphene-based Carbocatalysts: Synthesis, Properties, and Applications—Beyond Boundaries June 9th, 2023

Zinc transporter has built-in self-regulating sensor: New cryo-EM structure of a zinc-transporter protein reveals how this molecular machine functions to regulate cellular levels of zinc, an essential micronutrient June 9th, 2023

When all details matter -- Heat transport in energy materials June 9th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

USTC enhances fluorescence brightness of single silicon carbide spin color centers June 9th, 2023

Single quantum bit achieves complex systems modeling June 9th, 2023

Advances in nanotechnology application in biosafety materials A crucial response to COVID-19 pandemic June 9th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Military

With new experimental method, researchers probe spin structure in 2D materials for first time: By observing spin structure in “magic-angle” graphene, a team of scientists led by Brown University researchers have found a workaround for a long-standing roadblock in the field of two May 12th, 2023

New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Energy

Graphene-based Carbocatalysts: Synthesis, Properties, and Applications—Beyond Boundaries June 9th, 2023

When all details matter -- Heat transport in energy materials June 9th, 2023

Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023

Channeling mechanical energy in a preferred direction April 14th, 2023

Research partnerships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Destroying the superconductivity in a kagome metal: Electronic control of quantum transitions in candidate material for future low-energy electronics March 3rd, 2023

Polymer p-doping improves perovskite solar cell stability January 20th, 2023

SLAC/Stanford researchers discover how a nano-chamber in the cell directs protein folding: The results challenge a 70-year-old theory of how proteins fold in our cells and have profound implications for treating diseases linked to protein misfolding December 9th, 2022

Solar/Photovoltaic

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

New method addresses problem with perovskite solar cells: NREL researchers provide growth approach that boosts efficiency, stability December 29th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project