Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers develop innovative tool for measuring electron dynamics in semiconductors: Insights may lead to more energy-efficient chips and electronic devices

Optical nanoscopy uses laser beams to strike free electrons, scattering light and providing insights into electron distribution and dynamics within semiconductor materials. (Image courtesy of Laser Thermal Lab/UC Berkeley)
Optical nanoscopy uses laser beams to strike free electrons, scattering light and providing insights into electron distribution and dynamics within semiconductor materials. (Image courtesy of Laser Thermal Lab/UC Berkeley)

Abstract:
At the heart of every mobile phone, laptop and autonomous vehicle is a tiny semiconductor whose properties and, ultimately, performance are determined by free electrons. Now, UC Berkeley researchers have developed a new way to measure these electrons that could lead to more energy-efficient semiconductor materials and electronics.

Researchers develop innovative tool for measuring electron dynamics in semiconductors: Insights may lead to more energy-efficient chips and electronic devices

Berkeley, CA | Posted on March 3rd, 2023

As reported in Nano Letters, researchers demonstrated a new type of optical nanoscopy that can measure electron dynamics in semiconductors, a task that has become more challenging as demand grows for ever-smaller and faster integrated circuits. With the components of many everyday electronic devices already at nanoscale, new tools are needed to measure electrons with high resolution.

“Our optical nanoscopy integrates near-field scanning optical microscopy and pump-probe optics to enable high resolution at both spatial and temporal scales,” said Costas Grigoropoulos, professor of mechanical engineering and principal investigator of the study. “And this technology can be applied to a wide range of semiconductor materials, including silicon, germanium and gallium arsenide as well as other exotic materials, such as 2D materials and ferroelectrics.”

In other words, the optical nanoscopy tool uses a combination of optical imaging and laser probing technologies to measure electrons, or energy carriers, at picosecond and nanometer scales. These measurements may offer insights into how energy carriers are distributed and the way they behave within semiconductor materials, which can impact energy efficiency and other properties.

According to Jingang Li, lead author and a postdoctoral researcher in Grigoropoulos’s Laser Thermal Lab, this research represents an important step toward investigating and further optimizing energy savings for semiconductor-based electronic devices — such as mobile phones, LEDs, industrial solar cells and sensors.

“With a high density of chips in integrated circuits, the electron distribution and transport not only control the device functionality, but also govern the heat generation and dissipation process,” said Li. “Our nanoscopy will enable the investigation of nanoscale thermal management in these densely packed devices.”

To measure the electrons in a semiconductor, optical nanoscopy employs ultrafast lasers and an atomic force microscope (AFM) tip with an apex curvature of less than 30 nanometers. Researchers shine two laser beams — a pump beam and then a probe beam — onto the AFM tip. The first beam excites electrons in the sample, and after a carefully timed delay, the second beam strikes the tip. Then, the local information on electron properties can be obtained by analyzing the scattered light of the second beam.

Li thinks that optical nanoscopy may have applications beyond measuring electrons in semiconductor materials. “Because it’s a versatile optical diagnostic tool, it can be used to study many other physical phenomena and functional devices, such as phase transitions and data storage,” he said.

Other co-authors of this study include postdoctoral researchers Yoonsoo Rho and Penghong Ci; mechanical engineering Ph.D. students Rundi Yang and Matthew Eliceiri; and materials science and engineering professor Junqiao Wu. This study was supported by Laser Prismatics LLC.

####

For more information, please click here

Copyright © UC Berkeley College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

News and information

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Possible Futures

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Chip Technology

University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

The present and future of computing get a boost from new research July 21st, 2023

Scientists edge toward scalable quantum simulations on a photonic chip: A system using photonics-based synthetic dimensions could be used to help explain complex natural phenomena June 30th, 2023

Memory Technology

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

TUS researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films: The proposed method produces wiring suitable for developing all-carbon devices, including flexible sensors and energy conversion and storage devices March 3rd, 2023

Approaching the terahertz regime: Room temperature quantum magnets switch states trillions of times per second January 20th, 2023

Discoveries

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Announcements

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Tools

New single-photon Raman lidar can monitor for underwater oil leaks: System could be used aboard underwater vehicles for many applications June 30th, 2023

Research breakthrough could be significant for quantum computing future: Irish-based scientists confirm crucial characteristic of new superconductor material June 30th, 2023

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

Novel microscope developed to design better high-performance batteries: Innovation gives researchers inside view of how batteries work February 10th, 2023

Automotive/Transportation

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Beyond lithium: a promising cathode material for magnesium rechargeable batteries: Scientists discover the optimal composition for a magnesium secondary battery cathode to achieve better cyclability and high battery capacity February 10th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project