Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists take control of magnetism at the microscopic level: Neutrons reveal remarkable atomic behavior in thermoelectric materials for more efficient conversion of heat into electricity

The sample (gray) has no applied magnetic field and has left-handed (left inset) and right-handed (right inset) magnetic domain walls. When magnetized (red), the sample’s domain walls move closer together and either annihilate or combine (bottom inset).
CREDIT
Image courtesy of Oak Ridge National Laboratory.
The sample (gray) has no applied magnetic field and has left-handed (left inset) and right-handed (right inset) magnetic domain walls. When magnetized (red), the sample’s domain walls move closer together and either annihilate or combine (bottom inset). CREDIT Image courtesy of Oak Ridge National Laboratory.

Abstract:
The Science
Atoms in magnetic materials are organized into regions called magnetic domains. Within each domain, the electrons have the same magnetic orientation. This means their spins point in the same direction. “Walls” separate the magnetic domains. One type of wall has spin rotations that are left- or right-handed, known as having chirality. When subjected to a magnetic field, chiral domain walls approach one another, shrinking the magnetic domains. Researchers have developed a magnetic material whose thickness determines whether chiral domain walls have the same or alternating handedness. In the latter case, applying a magnetic field leads to annihilation of colliding domain walls. The researchers combined neutron scattering and electron microscopy to characterize these internal, microscopic features, leading to better understanding of the magnetic behavior.

Scientists take control of magnetism at the microscopic level: Neutrons reveal remarkable atomic behavior in thermoelectric materials for more efficient conversion of heat into electricity

Washington, DC | Posted on August 26th, 2022

The Impact
An emerging field of technology called spintronics involves processing and storing information by harnessing an electron’s spin instead of its charge. The ability to control this fundamental property could unlock new possibilities for developing electronic devices. Compared to current technology, these devices could store more information in less space and operate at higher speeds with less energy consumption. This study demonstrates a way to change the rotational direction and occurrence of domain wall pairs. This suggests a potential route for controlling domain walls’ properties and movement. The results could have implications for technologies based on spintronics.

Summary
The ability to manipulate domain wall movement has remained a challenge because typically magnetic domains can randomly switch orientations. In addition, domain boundaries move unpredictably when domain sizes are reduced to accommodate higher information storage density. However, a class of materials called chiral magnets has shown potential for mitigating random domain wall behavior. This is because chiral magnets exhibit intricate spin structures, which help reduce the random reversal of domains.

Researchers from Indiana University–Purdue University Indianapolis, Oak Ridge National Laboratory, Louisiana State University, Norfolk State University, the Peter Grünberg Institute, and the University of Louisiana at Lafayette developed a chiral magnetic material by inserting manganese atoms between hexagonal layers of niobium disulfide compounds. By performing neutron experiments at the High Flux Isotope Reactor (HFIR), the team was able to analyze the magnetic nanostructure of the material when subjected to different temperatures and magnetic fields. These measurements were combined with characterization via Lorentz transmission electron microscopy, allowing a more complete understanding of the magnetic behavior. The team’s data suggest that changing the thickness of the chiral magnet can cause some domain wall pairs to rotate in opposite directions, known as having opposite chirality. Furthermore, the researchers found that domain walls with opposite chirality will move toward each other and annihilate when exposed to an external magnetic field. The findings could inform future research on controlling magnetic properties for technological applications.



Funding
The research was supported by the Department of Energy (DOE) Established Program to Stimulate Competitive Research, the National Science Foundation, the European Research Council, the German Research Foundation, and the Louisiana Board of Regents. Research was performed at High Flux Isotope Reactor at Oak Ridge National Laboratory, a DOE Office of Science user facility.

####

For more information, please click here

Contacts:
Michael Church
DOE/US Department of Energy

Office: 2028416299

Copyright © DOE/US Department of Energy

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Magnetism/Magnons

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Chip Technology

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project