Home > Press > Scientists take control of magnetism at the microscopic level: Neutrons reveal remarkable atomic behavior in thermoelectric materials for more efficient conversion of heat into electricity
![]() |
The sample (gray) has no applied magnetic field and has left-handed (left inset) and right-handed (right inset) magnetic domain walls. When magnetized (red), the sample’s domain walls move closer together and either annihilate or combine (bottom inset). CREDIT Image courtesy of Oak Ridge National Laboratory. |
Abstract:
The Science
Atoms in magnetic materials are organized into regions called magnetic domains. Within each domain, the electrons have the same magnetic orientation. This means their spins point in the same direction. “Walls” separate the magnetic domains. One type of wall has spin rotations that are left- or right-handed, known as having chirality. When subjected to a magnetic field, chiral domain walls approach one another, shrinking the magnetic domains. Researchers have developed a magnetic material whose thickness determines whether chiral domain walls have the same or alternating handedness. In the latter case, applying a magnetic field leads to annihilation of colliding domain walls. The researchers combined neutron scattering and electron microscopy to characterize these internal, microscopic features, leading to better understanding of the magnetic behavior.
The Impact
An emerging field of technology called spintronics involves processing and storing information by harnessing an electron’s spin instead of its charge. The ability to control this fundamental property could unlock new possibilities for developing electronic devices. Compared to current technology, these devices could store more information in less space and operate at higher speeds with less energy consumption. This study demonstrates a way to change the rotational direction and occurrence of domain wall pairs. This suggests a potential route for controlling domain walls’ properties and movement. The results could have implications for technologies based on spintronics.
Summary
The ability to manipulate domain wall movement has remained a challenge because typically magnetic domains can randomly switch orientations. In addition, domain boundaries move unpredictably when domain sizes are reduced to accommodate higher information storage density. However, a class of materials called chiral magnets has shown potential for mitigating random domain wall behavior. This is because chiral magnets exhibit intricate spin structures, which help reduce the random reversal of domains.
Researchers from Indiana University–Purdue University Indianapolis, Oak Ridge National Laboratory, Louisiana State University, Norfolk State University, the Peter Grünberg Institute, and the University of Louisiana at Lafayette developed a chiral magnetic material by inserting manganese atoms between hexagonal layers of niobium disulfide compounds. By performing neutron experiments at the High Flux Isotope Reactor (HFIR), the team was able to analyze the magnetic nanostructure of the material when subjected to different temperatures and magnetic fields. These measurements were combined with characterization via Lorentz transmission electron microscopy, allowing a more complete understanding of the magnetic behavior. The team’s data suggest that changing the thickness of the chiral magnet can cause some domain wall pairs to rotate in opposite directions, known as having opposite chirality. Furthermore, the researchers found that domain walls with opposite chirality will move toward each other and annihilate when exposed to an external magnetic field. The findings could inform future research on controlling magnetic properties for technological applications.
Funding
The research was supported by the Department of Energy (DOE) Established Program to Stimulate Competitive Research, the National Science Foundation, the European Research Council, the German Research Foundation, and the Louisiana Board of Regents. Research was performed at High Flux Isotope Reactor at Oak Ridge National Laboratory, a DOE Office of Science user facility.
####
For more information, please click here
Contacts:
Michael Church
DOE/US Department of Energy
Office: 2028416299
Copyright © DOE/US Department of Energy
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
New compound unleashes the immune system on metastases September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Display technology/LEDs/SS Lighting/OLEDs
Simple ballpoint pen can write custom LEDs August 11th, 2023
Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023
A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023
Magnetism/Magnons
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Govt.-Legislation/Regulation/Funding/Policy
Quantum powers researchers to see the unseen September 8th, 2023
Chloride ions from seawater eyed as possible lithium replacement in batteries of the future August 11th, 2023
Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023
Possible Futures
New compound unleashes the immune system on metastases September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Spintronics
Quantum materials: Electron spin measured for the first time June 9th, 2023
Spin photonics to move forward with new anapole probe November 4th, 2022
Chip Technology
University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023
The present and future of computing get a boost from new research July 21st, 2023
Memory Technology
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Announcements
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
The present and future of computing get a boost from new research July 21st, 2023
Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |