Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe

Abstract:
• OCSiAl’s graphene nanotube synthesis facility, expected to be the largest of its kind, is scheduled to begin production in 2025 •The new production facility is expected to increase the current production capacity of OCSiAl by several times – OCSiAl believes that the capacity of the new synthesis facility will be enough to supply nanotube solutions for batteries for up to 10 million electric vehicles (EVs) •OCSiAl’s state-of-the-art technology center will contribute to the development of advanced materials for the automotive and other industries across Europe

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe

Luxembourg | Posted on March 4th, 2022

OCSiAl, the world’s largest manufacturer of graphene nanotubes, a game-changing material that has potential applications across up to 50% of the global materials market, has been granted approval by Luxembourg authorities for a production plant, together with an associated R&D center, in Differdange, Luxembourg. The facility would further cement OCSiAl’s strategic advantage as the leading supplier of the supermaterial and enhance the geographic accessibility of graphene nanotubes to the growing EV components markets in Europe. In the state-of-the-art graphene nanotube R&D center, talented scientists and engineers will develop nanotube solutions for the transportation of the future.



A graphene nanotube is a unique form of carbon that can be imagined as a graphene sheet, with a thickness of one atom, rolled into a tube. One of the best electrical conductors on earth, graphene nanotubes are 100 times stronger than steel, but lighter than aluminum. When added to a material, nanotubes create a strong, conductive skeleton inside the material that results in a substantial improvement to the material’s targeted properties. The use of elastomers, thermoplastics and thermosets, reinforced with graphene nanotubes, will lead to the development of lightweight “smart” car bodies; safe, energy-efficient tires; and long-lasting, high-performance batteries for EVs. Today, OCSiAl’s nanotubes are applied in serial production by a number of leading lithium-ion battery manufacturers. The new facility is expected to increase OCSiAl’s production capacity, which could supply nanotubes for up to 10 million lithium-ion battery-powered EVs per year. The total number of EVs sold around the world in 2021 was 6.5 million.



“Our state-of-the-art graphene nanotube facility in Luxembourg will be positioned near more than 20 gigafactories in Europe, many of which are already our partners. Its strategic location between Belgium, France and Germany will allow us to reduce logistics costs and work closely with leading automakers, the largest chemical producers and large tire manufacturers across Europe,” said Konstantin Notman, Chief Executive Officer of OCSiAl Group. He added, “With the new facility, we’ll be able to supply these leading industries with advanced materials for the next generation of EV components.”



OCSiAl plans to invest $300 million in the development of the cutting-edge facility, which was designed to minimize the usage of energy and resources as well as to protect the population and the biodiversity in the surrounding environment from any negative impact. Moreover, graphene nanotubes contribute to sustainable development by giving industries the ability to create next-generation products with previously unachievable properties and with less raw material required.



OCSiAl’s headquarters and one of the company’s three graphene nanotube development centers are already located in Luxembourg. The new facility will expand the company’s global footprint and is expected to increase its headcount by 300 across research and production. Over 1,500 industry players in more than 50 countries are developing technologies and products based on OCSiAl’s graphene nanotubes. In some products, graphene nanotubes have become a key component. For instance, batteries with OCSiAl nanotubes are already in serial production by a number of leading lithium-ion battery makers. Two of the five largest global tire manufacturers are at an advanced R&D stage with OCSiAl’s nanotubes, and seven of the ten largest global coatings producers are conducting advanced industrial trials. According to third-party analysis, the total addressable market for OCSiAl’s graphene nanotube products and technology is expected to surpass $400 billion by 2035.

####

About OCSiAl Group
Headquartered in Luxembourg, OCSiAl Group is the world’s largest manufacturer of graphene nanotubes (also known as single wall carbon nanotubes). It has more than 450 employees worldwide in countries including the United States, Europe, China, Russia, India, Japan, and South Korea. Current annual production capacity is 90 tonnes, which accounts for 97% of the world’s graphene nanotube production capacities. OCSiAl develops graphene nanotube solutions for electrochemical power sources, elastomers, paints, coatings, composites, and plastics.

For more information, please click here

Contacts:
Anastasia Zirka
Senior PR & Advertising Manager
OCSiAl Group
+7 913 989 9239

Copyright © OCSiAl Group

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Graphene/ Graphite

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023

Ribbons of graphene push the material’s potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Possible Futures

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Announcements

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Automotive/Transportation

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

Chloride ions from seawater eyed as possible lithium replacement in batteries of the future August 11th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project