Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe

Abstract:
• OCSiAl’s graphene nanotube synthesis facility, expected to be the largest of its kind, is scheduled to begin production in 2025 •The new production facility is expected to increase the current production capacity of OCSiAl by several times – OCSiAl believes that the capacity of the new synthesis facility will be enough to supply nanotube solutions for batteries for up to 10 million electric vehicles (EVs) •OCSiAl’s state-of-the-art technology center will contribute to the development of advanced materials for the automotive and other industries across Europe

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe

Luxembourg | Posted on March 4th, 2022

OCSiAl, the world’s largest manufacturer of graphene nanotubes, a game-changing material that has potential applications across up to 50% of the global materials market, has been granted approval by Luxembourg authorities for a production plant, together with an associated R&D center, in Differdange, Luxembourg. The facility would further cement OCSiAl’s strategic advantage as the leading supplier of the supermaterial and enhance the geographic accessibility of graphene nanotubes to the growing EV components markets in Europe. In the state-of-the-art graphene nanotube R&D center, talented scientists and engineers will develop nanotube solutions for the transportation of the future.



A graphene nanotube is a unique form of carbon that can be imagined as a graphene sheet, with a thickness of one atom, rolled into a tube. One of the best electrical conductors on earth, graphene nanotubes are 100 times stronger than steel, but lighter than aluminum. When added to a material, nanotubes create a strong, conductive skeleton inside the material that results in a substantial improvement to the material’s targeted properties. The use of elastomers, thermoplastics and thermosets, reinforced with graphene nanotubes, will lead to the development of lightweight “smart” car bodies; safe, energy-efficient tires; and long-lasting, high-performance batteries for EVs. Today, OCSiAl’s nanotubes are applied in serial production by a number of leading lithium-ion battery manufacturers. The new facility is expected to increase OCSiAl’s production capacity, which could supply nanotubes for up to 10 million lithium-ion battery-powered EVs per year. The total number of EVs sold around the world in 2021 was 6.5 million.



“Our state-of-the-art graphene nanotube facility in Luxembourg will be positioned near more than 20 gigafactories in Europe, many of which are already our partners. Its strategic location between Belgium, France and Germany will allow us to reduce logistics costs and work closely with leading automakers, the largest chemical producers and large tire manufacturers across Europe,” said Konstantin Notman, Chief Executive Officer of OCSiAl Group. He added, “With the new facility, we’ll be able to supply these leading industries with advanced materials for the next generation of EV components.”



OCSiAl plans to invest $300 million in the development of the cutting-edge facility, which was designed to minimize the usage of energy and resources as well as to protect the population and the biodiversity in the surrounding environment from any negative impact. Moreover, graphene nanotubes contribute to sustainable development by giving industries the ability to create next-generation products with previously unachievable properties and with less raw material required.



OCSiAl’s headquarters and one of the company’s three graphene nanotube development centers are already located in Luxembourg. The new facility will expand the company’s global footprint and is expected to increase its headcount by 300 across research and production. Over 1,500 industry players in more than 50 countries are developing technologies and products based on OCSiAl’s graphene nanotubes. In some products, graphene nanotubes have become a key component. For instance, batteries with OCSiAl nanotubes are already in serial production by a number of leading lithium-ion battery makers. Two of the five largest global tire manufacturers are at an advanced R&D stage with OCSiAl’s nanotubes, and seven of the ten largest global coatings producers are conducting advanced industrial trials. According to third-party analysis, the total addressable market for OCSiAl’s graphene nanotube products and technology is expected to surpass $400 billion by 2035.

####

About OCSiAl Group
Headquartered in Luxembourg, OCSiAl Group is the world’s largest manufacturer of graphene nanotubes (also known as single wall carbon nanotubes). It has more than 450 employees worldwide in countries including the United States, Europe, China, Russia, India, Japan, and South Korea. Current annual production capacity is 90 tonnes, which accounts for 97% of the world’s graphene nanotube production capacities. OCSiAl develops graphene nanotube solutions for electrochemical power sources, elastomers, paints, coatings, composites, and plastics.

For more information, please click here

Contacts:
Anastasia Zirka
Senior PR & Advertising Manager
OCSiAl Group
+7 913 989 9239

Copyright © OCSiAl Group

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Graphene/ Graphite

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

Possible Futures

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

Announcements

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

Automotive/Transportation

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

New nanowire sensors are the next step in the Internet of Things January 6th, 2023

NYU Tandon researchers explore a more frictionless future: Elisa Riedo’s and her lab team’s discovery of a fundamental law of friction leads to new materials that can minimize energy loss November 4th, 2022

Scientists count electric charges in a single catalyst nanoparticle down to the electron: Tenfold improvement in the sensitivity of electron holography reveals the net charge in a single platinum nanoparticle with a precision of just one electron, providing fundamental informatio October 14th, 2022

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

Correlated rattling atomic chains reduce thermal conductivity of materials January 20th, 2023

Lithium-sulfur batteries are one step closer to powering the future January 6th, 2023

Tin selenide nanosheets enables to develop wearable tracking devices December 9th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project