Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The first highway trials show that nanotube-reinforced asphalt concrete prevents cracks and ruts

Abstract:
Trials of the world’s first experimental section of road pavement with graphene nanotubes have demonstrated a 67% increase in resistance to rutting and cracking. The next step in the industrial application of the technology is designing a road network with a nanotube-reinforced pavement.

The first highway trials show that nanotube-reinforced asphalt concrete prevents cracks and ruts

Luxembourg | Posted on January 16th, 2020

The Russian company ECO Group has successfully tested road bitumen modified with TUBALL graphene nanotubes produced by OCSiAl. The Ministry of Transport of the Russian Federation had found the formulation to be promising and thus authorized an experimental section of road pavement with nanotubes to be laid on the M-4 Don federal highway.



“Graphene nanotubes form a reinforcing network in asphalt concrete, which improves its physical and mechanical properties: rutting resistance, ring-and-ball softening point, ultimate compressive strength, and fatigue life,” says Alexander Zimnyakov, OCSiAl’s Vice President. “This significantly boosts asphalt concrete’s performance, which is especially important for roads subjected to intense traffic loads at high temperatures.”



Nanotubes are introduced into bitumen using adhesive agents, and the modified bitumen is then added to asphalt concrete. Nanotubes improve the properties of road bitumen even at very low concentrations, from 0.025% to 0.035% in the total weight of bitumen, while the content of bitumen itself in asphalt concrete does not exceed 6%. The tests showed an increase in the softening point by 10°C and a more than twofold increase in the viscosity of the binding agent.



As a result, asphalt concretes containing bitumen with TUBALL nanotubes demonstrate a 67% improvement in rutting resistance and a 67.5% boost in fatigue cracking resistance.



Now, after these successful trials, the next step in the nationwide application of this invention involves designing a road network with a nanotube-reinforced pavement.



“The Expert Council under the Ministry of Transport of the Russian Federation, with the participation of experts from various ministries and departments, recognized the innovative nature of ECO Group’s asphalt concrete modification, approved its application in road construction, and recommended considering its use in road construction,” said ECO Group’s General Director, Alexander Greiz.



Graphene nanotubes (also known as single wall carbon nanotubes) are an incredibly strong and light material that is widely used to change the properties of various materials. Their ability to improve asphalt concrete pavements is being researched by teams of scientists around the world. This solution is one of the first to be green-lighted for testing on real roads.

####

For more information, please click here

Contacts:
Anastasia Zirka
PR & Advertising Manager
+7 913 989 9239

Copyright © OCSiAl Group

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Construction

Temperature-sensing building material changes color to save energy January 27th, 2023

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project