Home > Press > Save time using maths: Analytical tool designs corkscrew-shaped nano-antennae
![]() |
| The nano-antennae werde produced in an electron microscope by direct electron-beam writing. CREDIT HZB |
Abstract:
The nanostructures from Katja Höflich's HZB team are shaped like corkscrews and made of silver. Mathematically, such a nano antenna can be regarded as an one-dimensional line that forms a helix, characterized by parameters such as diameter, length, number of turns per unit length, and handedness.
The nano corkscrews are highly sensitive to light: depending on frequency and polarisation, they can strongly enhance it. Because helical antennas have a handedness, they can select light quanta according to their handedness, i.e. their spin. This results in novel applications in information technology based on the spin quantum number of light. Another application may lay in sensor technology in detecting chiral molecular species down to the single molecule level.
Usually, the interaction of such nano-antennas with an electromagnetic field is determined using numerical methods. Each helix geometry, however, requires a new numerically expensive calculation.
For the first time, Höflich and her team have now derived an analytically exact solution of the problem. "We now have a formula that tells us how a nano-antenna with specific parameters responds to light", says Höflich. This analytical description can be used as a design tool, as it specifies the required geometrical parameters of a nano-helix to amplify electromagnetic fields of desired frequencies or polarisation.
The HZB researchers were able to fabricate nano-antennae in an electron microscope by using direct electron-beam writing. The electron beam first writes a helix-shaped carbon structure one point at a time. This structure is subsequently coated with silver. The actual measurements of the optical properties for these silver nano-antennae are in good agreement with the calculated properties predicted by the analytical model.
####
For more information, please click here
Contacts:
Katja Höflich
49-308-062-42165
Copyright © Helmholtz-Zentrum Berlin für Materialien und Energie
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Wireless/telecommunications/RF/Antennas/Microwaves
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024
Possible Futures
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Chip Technology
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Quantum Computing
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Optical computing/Photonic computing
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Programmable electron-induced color router array May 14th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Sensors
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Tools
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Photonics/Optics/Lasers
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||