Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling

The tunneling leakage is a major quantum obstacle which hinders further miniaturization of electronic devices. To explore the miniaturization limits of molecular electronics, the oligo(aryleneethynylene) (OAE) molecules were employed to investigate the transition between through-space tunneling and molecular tunneling. For the shortest OAE molecule, the intrinsic single-molecule charge transport can be outstripped from tunneling leakage at 0.66 nm, suggesting the potential to push the miniaturization limit of molecular electronic devices to the angstrom scale.

CREDIT
Xiamen University
The tunneling leakage is a major quantum obstacle which hinders further miniaturization of electronic devices. To explore the miniaturization limits of molecular electronics, the oligo(aryleneethynylene) (OAE) molecules were employed to investigate the transition between through-space tunneling and molecular tunneling. For the shortest OAE molecule, the intrinsic single-molecule charge transport can be outstripped from tunneling leakage at 0.66 nm, suggesting the potential to push the miniaturization limit of molecular electronic devices to the angstrom scale. CREDIT Xiamen University

Abstract:
Advances of miniaturization in electronics have created dramatic impacts on the industrial innovations and our lives. Nowadays, the semiconductor industry has been devoted to scaling down the feature size of electronic devices to the scale of sub-5 nm. Moore's Law, however, has not been the only priority in semiconductor industry because of some inevitable quantum obstacles which hinder the further miniaturization and integration, such as the tunneling leakage current and the thermal dissipation. As a candidate of the supplementary support and even replacement for future electronic device, the bottom-up strategy to use single molecules as charge transport component can be promising, as the primary molecular elements for building single-molecule electronic components in electronic circuitry possess the intrinsic charge transport properties to overcome the tunneling leakage between the same scale of nanogap distance. Nevertheless, knowing the feature size of the domination of tunneling leakage in molecular electronics is of fundamental significance, which enhances the understanding of the technical limitations and boundaries for using single-molecule components as electronic devices.

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling

Xiamen, China | Posted on December 16th, 2018

By employing a series of oligo(aryleneethynylene) (OAE) derivatives with different numbers of repeating units of ethynylphenyl as molecular ruler, we used mechanically controllable break junction technique to investigate the dominant size ranges of the through-space tunneling (tunneling leakage between the source and drain electrode) and molecular tunneling of single-molecule junctions. To avoid the inevitable snap-back effect during the electrode stretching, which might hinder the detection of some molecular junction configurations at the initial stage of gap opening, we chose the electrode gap closing process to provide precise determination of the electrode-electrode distance for the conductance-nanogap size correlation. Hence, by screening this series of OAE molecules, a correlation of the characterized conductance of the molecules with different lengths and configurations is investigated, and the transition between through-space tunneling and molecular tunneling is quantitatively determined.

By retrieving the most probable conductance-distance evolution from conductance-distance histogram of molecular junction, which we called "master curve", we found direct transition between through-space dominated transport and molecular tunneling dominated transport. Therefore, with the molecular length increases, the effective nanogap distance range where the single-molecule devices properly function, which the molecular tunneling dominated, for each OAE molecule is 0.66~1.2 nm for OAE2, 0.91~1.9 nm for OAE3, 1.2~2.5 nm for OAE4 and 1.5~3.3 nm for OAE5, respectively. These findings suggest that in future single-molecule electronics, to use the intrinsic properties of the target molecules, nanogaps within two terminals must reach a certain range of size according to the target molecules to outstrip the tunneling leakage current. On the other hand, for the smallest OAE2, we obtained a feature size of below 0.66 nm, suggesting the shrinking limit for using molecular electronic device. "These conclusions suggest that assembling conjugated molecules with bottom up strategy for molecular electronics are highly promising for future miniaturization of electronic devices." says Junyang Liu, the first author of the study, who dose his postdoctoral research in Collaborative Innovation Center of Chemistry for Energy Materials, China.

####

For more information, please click here

Contacts:
Wenjing Hong

86-059-221-80680

Copyright © Xiamen University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Hardware

The present and future of computing get a boost from new research July 21st, 2023

A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Molecular Nanotechnology

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project