Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New metamaterials can change properties with a flick of a light-switch: Material can lead to new optical devices

This is a cross-sectional scanning electron microscopy images of a 750 nm period grating fabricated by focused ion beam milling in a 300 nm thick amorphous germanium antimony telluride film on silica.
CREDIT: Karvounis/Gholipour/MacDonald/Zheludev, Optoelectronics Research Centre, University of Southampton
This is a cross-sectional scanning electron microscopy images of a 750 nm period grating fabricated by focused ion beam milling in a 300 nm thick amorphous germanium antimony telluride film on silica.

CREDIT: Karvounis/Gholipour/MacDonald/Zheludev, Optoelectronics Research Centre, University of Southampton

Abstract:
Invisibility cloaks have less to do with magic than with metamaterials. These human-engineered materials have properties that don't occur in nature, allowing them to bend and manipulate light in weird ways. For example, some of these materials can channel light around an object so that it appears invisible at a certain wavelength. These materials are also useful in applications such as smaller, faster, and more energy efficient optics, sensors, light sources, light detectors and telecommunications devices.

New metamaterials can change properties with a flick of a light-switch: Material can lead to new optical devices

Washington, DC | Posted on August 3rd, 2016

Now researchers have designed a new kind of metamaterial whose properties can be changed with a flick of a switch. In their proof-of-principle experiment, the researchers used germanium antimony telluride (GST) -- the kind of phase-change material found in CDs and DVDs -- to make an improved switchable metasurface that can block or transmit particular wavelengths of light at the command of light pulses. The researchers describe the metamaterial this week in Applied Physics Letters, from AIP Publishing, and how its ability to switch properties can be used in a range of sophisticated optical devices.

"Technologies based upon the control and manipulation of light are all around us and of fundamental importance to modern society," said Kevin MacDonald, a researcher at the University of Southampton in the U.K. "Metamaterials are part of the process of finding new ways to use light and do new things with it -- they are an enabling technology platform for 21st century optics."

By dynamically controlling the optical properties of materials, you can modulate, select, or switch characteristics of light beams, such as intensity, phase, color and direction -- an ability that's essential to many existing and potential devices, he said.

Switchable metamaterials in general aren't new. MacDonald and many others have made such materials before by combining metallic metamaterials with so-called active media such as GST, which can respond to external stimuli like heat, light or an electric field. In these hybrid materials, the metal component is structurally engineered at the nanometer scale to provide the desired optical properties. Incorporating the active medium provides a way to tune or switch those properties.

The problem is that metals tend to absorb light at visible and infrared wavelengths, making them unsuitable for many optical device applications. Melting points are also suppressed in nanostructured metals, making the metamaterials susceptible to damage from laser beams. In addition, a typical metal is gold, which isn't compatible with the CMOS technology that's ubiquitous in making today's integrated devices.

In the new work, MacDonald and his colleagues at Southampton's Optoelectronics Research Centre & Centre for Photonic Metamaterials have made a switchable metamaterial that doesn't use metal at all. "What we've done now is structure the phase-change material itself," MacDonald said. "We have created what is known as an all-dielectric metamaterial, with the added benefit of GST's nonvolatile phase-switching behavior."

Pulses of laser light can change the structure of GST between a random, amorphous one and a crystalline one. For GST, this behavior is nonvolatile, which means it will stay in a particular state until another pulse switches it back. In rewritable CDs and DVDs, this binary laser-driven switching is the basis for data storage.

The researchers created metamaterial grating patterns in an amorphous GST film only 300 nm thick, with lines 750 to 950 nanometers apart. This line spacing allows the surfaces to selectively block the transmission of light at near-infrared wavelengths (between 1300 and 1600 nm). But when a green laser converts the surfaces into a crystalline state, they become transparent at these wavelengths.

The research team is now working to make metamaterials that can switch back and forth over many cycles. They're also planning increasingly complex structures to deliver more sophisticated optical functions. For example, this approach could be used to make switchable ultra-thin metasurface lenses and other flat, optical components.

####

About American Institute of Physics
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See apl.aip.org.

For more information, please click here

Contacts:
AIP Media Line

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "All-dielectric phase-change reconfigurable metasurface," is authored by Artemios Karvounis, Behrad Gholipour, Kevin F. MacDonald and Nikolay I. Zheludev. The article will appear in the journal Applied Physics Letters on August 2, 2016 (DOI: 10.1063/1.4959272). After that date, it can be accessed at:

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Wireless/telecommunications/RF/Antennas/Microwaves

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Memory Technology

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Sensors

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Photonics/Optics/Lasers

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project