Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists take a major leap toward a 'perfect' quantum metamaterial: Berkeley Lab, UC Berkeley researchers lead study that uses trapped atoms in an artificial crystal of light

The wavelike pattern at the top shows the accordion-like structure of a proposed quantum material -- an artificial crystal made of light -- that can trap atoms in regularly spaced nanoscale pockets. These pockets can be made to hold a large collection of ultracold 'host' atoms (green), slowed to a standstill by laser light, and individually planted "probe" atoms (red) that can be made to transmit quantum information in the form of a photon (particle of light). The lower panel shows how the artificial crystal can be reconfigured with light from an open (hyperbolic) geometry to a closed (elliptical) geometry, which greatly affects the speed at which the probe atom can release a photon.
Credit: Pankaj K. Jha/UC Berkeley
The wavelike pattern at the top shows the accordion-like structure of a proposed quantum material -- an artificial crystal made of light -- that can trap atoms in regularly spaced nanoscale pockets. These pockets can be made to hold a large collection of ultracold 'host' atoms (green), slowed to a standstill by laser light, and individually planted "probe" atoms (red) that can be made to transmit quantum information in the form of a photon (particle of light). The lower panel shows how the artificial crystal can be reconfigured with light from an open (hyperbolic) geometry to a closed (elliptical) geometry, which greatly affects the speed at which the probe atom can release a photon.

Credit: Pankaj K. Jha/UC Berkeley

Abstract:
Scientists have devised a way to build a "quantum metamaterial"--an engineered material with exotic properties not found in nature--using ultracold atoms trapped in an artificial crystal composed of light. The theoretical work represents a step toward manipulating atoms to transmit information, perform complex simulations or function as powerful sensors.

Scientists take a major leap toward a 'perfect' quantum metamaterial: Berkeley Lab, UC Berkeley researchers lead study that uses trapped atoms in an artificial crystal of light

Berkeley, CA | Posted on May 13th, 2016

The research team, led by scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley, proposes the use of an accordion-like atomic framework, or "lattice" structure, made with laser light to trap atoms in regularly spaced nanoscale pockets. Such a light-based structure, which has patterned features that in some ways resemble those of a crystal, is essentially a "perfect" structure--free of the typical defects found in natural materials.

Researchers believe they can pinpoint the placement of a so-called "probe" atom in this crystal of light, and actively tune its behavior with another type of laser light (near-infrared light) to make the atom cough up some of its energy on demand in the form of a particle of light, or photon.

This photon, in turn, can be absorbed by another probe atom (in the same or different lattice site) in a simple form of information exchange--like spoken words traveling between two string-connected tin cans.

"Our proposal is very significant," said Xiang Zhang, director of Berkeley Lab's Materials Sciences Division who led the related research paper, published in April in Physical Review Letters. "We know that the enhancement and ultrafast control of single-photon emission lies at the heart of quantum technologies, in particular quantum information processing, and this is exactly what we have achieved here. Previous proposals can do one or the other but not both simultaneously."

Zhang is also a professor at UC Berkeley, director of the National Science Foundation's Center for Scalable and Integrated Nanomanufacturing and a member of the Kavli Energy NanoScience Institute at Berkeley Lab and UC Berkeley.

Pankaj K. Jha, a UC Berkeley postdoctoral researcher who is the lead author of the paper and works in Zhang's group, said, "Now we have control over the speed of the release of a photon, so we can optically process information much faster, and efficiently transfer it from one point to another." Other scientists who contributed to this work include Michael Mrejen, Jeongmin Kim, Chihhui Wu, Yuan Wang and Yuri V. Rostovtsev.

This ability to release a photon at fast rates, and to transmit it with low losses from one atom to another, is a vital step in processing information for quantum computation, which could use an array of these controlled photon releases to carry out complex calculations far more rapidly than is possible in modern computers.

A quantum computer, which the tech industry and scientific community are hotly pursuing because of its potential to perform more complex calculations than are possible using modern supercomputers, could tap into the bizarre quantum realm in which ordinary physics rules don't apply.

While today's computers can store information as binary bits--either ones or zeroes--a quantum compter would use "qubits" in which an individual bit of information can simultaneously exist in multiple states. These qubits could take the form of atoms, photons, electrons, or even as an individual fundamental property of a particle, and would exponentially increase the number of calculations a computer could perform in an instant.

The non-uniform distribution of the ultracold atoms in the artificial crystal is a key to this latest study, said Jha. "It makes the crucial difference for creating a 'perfectly' lossless and reconfigurable quantum metamaterial," he said, allowing the optical structure of the artificial crystal to be reconfigured from an open geometry (hyperbolic-shaped) to a closed one (elliptical) at the same frequency and with ultrafast timing. This controllable shape-change dramatically changes the speed at which a probe atom in the artificial crystal releases a photon.

The latest proposal suggests that it is possible to speed up the rate at which a probe atom can emit a photon from nanoseconds, or billionths of a second, to picoseconds, or trillionths of a second. Also, this process is importantly considered "lossless," meaning the photons would not lose any of their energy to their surrounding structure as they likely would in a traditional material. This overcomes one hurdle toward quantum computing and information processing.

Atoms planted in the artificial crystal could also possibly be induced to hop from one place to another. In this case, the atoms could themselves serve as the information carriers in a quantum computer or be arranged as quantum sensors, Jha said.

Jha noted that this latest study marries metamaterials research with the science of "cold atoms," which are atoms that have been slowed and even brought to a standstill using laser light, which in the process chills them to supercool temperatures. He said, "This integration has solved some of the outstanding challenges for metamaterial platforms and outperforms other designs in several key aspects crucial for quantum technologies."

The researchers found that rubidium atoms are ideally suited for this study, however barium, calcium and cesium atoms can also be trapped or planted in the artificial crystal, as they exhibit similar energy levels. While the artificial crystal used in the study is described as one-dimensional, Jha said the same approach could be easily extended to create 2-D and 3-D quantum metamaterial crystal structures out of light.

To realize the proposed metamaterial in an actual experiment, Zhang and Jha said the research team would need to trap several atoms per lattice site in the artificial crystal, and to hold those atoms in the lattice even when they are excited to higher energy states.

Zhang said, "Berkeley Lab has been a leader in groundbreaking research in metamaterials, and this work could open new realms of opportunities for quantum light-matter interactions, with enticing applications in quantum information science."

Jha added, "We believe that the combination of these two contemporary realms of science will help to address key challenges in both fields and open an entirely new research direction at the interface of quantum photonics and artificial materials."

###

The work was supported by the U.S. Air Force Office of Scientific Research and the Gordon and Betty Moore Foundation.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Glenn Roberts Jr.

510-486-5582

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

View more work by Xiang Zhang's laboratory:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optical computing/Photonic computing

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Quantum nanoscience

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project