Home > Press > Researchers develop new semiconducting polymer for forthcoming flexible electronics
![]() |
| Kilwon Cho and the team's research was published in Journal of the American Chemical Society as a cover article and highlighted by the editors in JACS Spotlights.
CREDIT: Journal of American Chemical Society |
Abstract:
Polymer semiconductors, which can be processed on large-area and mechanically flexible substrates with low cost, are considered as one of the main components for future plastic electronics. However, they, especially n-type semiconducting polymers, currently lag behind inorganic counterparts in the charge carrier mobility - which characterizes how quickly charge carriers (electron) can move inside a semiconductor - and the chemical stability in ambient air.
Recently, a joint research team, consisting of Prof. Kilwon Cho and Dr. Boseok Kang with Pohang University of Science and Technology, and Prof. Yun-Hi Kim and Dr. Ran Kim with Gyungsang National University, has developed a new n-type semiconducting polymer with superior electron mobility and oxidative stability. The research outcome was published in Journal of the American Chemical Society (JACS) as a cover article and highlighted by the editors in JACS Spotlights.
The team modified a n-type conjugated polymer with semi-fluoroalkyl side chains - which are found to have several unique properties, such as hydrophobicity, rigidity, thermal stability, chemical and oxidative resistance, and the ability to self-organize. As a result, the modified polymer was shown to form a superstructure composed of polymer backbone crystals and side-chain crystals, resulting in a high degree of semicrystalline order. The team explained this phenomenon is attributed to the strong self-organization of the side chains and significantly boosts charge transport in polymer semiconductors.
Prof. Cho emphasized "We investigated the effects of semi-fluoroalkyl side chains of conjugated polymers at the molecular level and suggested a new strategy to design highly-performing polymeric materials for next-generation plastic electronics".
This research was supported by the Center for Advanced Soft Electronics under the Global Frontier Research Program and the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT and Future Planning.
####
For more information, please click here
Contacts:
YunMee Jung
82-542-792-417
Copyright © Pohang University of Science & Technology (POSTECH)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Flexible Electronics
MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Chip Technology
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||