Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New nanomaterial maintains conductivity in three dimensions: International team seamlessly bonds CNTs and graphene

Abstract:
An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

New nanomaterial maintains conductivity in three dimensions: International team seamlessly bonds CNTs and graphene

Cleveland, OH | Posted on September 5th, 2015

The research holds potential for increased energy storage in high efficiency batteries and supercapacitors, increasing the efficiency of energy conversion in solar cells, for lightweight thermal coatings and more. The study is published today (Sept. 4) in the online journal Science Advances.

In early testing, a three-dimensional (3D) fiber-like supercapacitor made with the uninterrupted fibers of carbon nanotubes and graphene matched or bettered--by a factor of four--the reported record-high capacities for this type of device.

Used as a counter electrode in a dye-sensitized solar cell, the material enabled the cell to convert power with up to 6.8 percent efficiency and more than doubled the performance of an identical cell that instead used an expensive platinum wire counter electrode.

Carbon nanotubes could be highly conductive along the 1D nanotube length and two-dimensional graphene sheets in the 2Dplane. But the materials fall short in a three-dimensional world due to the poor interlayer conductivity, as do two-step processes melding nanotubes and graphene into three dimensions.

"Two-step processes our lab and others developed earlier lack a seamless interface and, therefore, lack the conductance sought," said Liming Dai, the Kent Hale Smith Professor of Macromolecular Science and Engineering at Case Western Reserve University and a leader of the research.

"In our one-step process, the interface is made with carbon-to-carbon bonding so it looks as if it's one single graphene sheet," Dai said. "That makes it an excellent thermal and electrical conductor in all planes."

Dai has worked for nearly four years with Zhong Lin Wang, the Hightower Chair in Materials Science and Engineering, and Yong Ding, a senior research scientist, at Georgia Institute of Technology; and Zhenhai Xia, professor of materials science and engineering, at the University of North Texas; Ajit Roy, principal materials research engineer in the Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton; and others on a U.S. Department of Defense-Multidisciplinary University Research Initiative (MURI) program (Joycelyn Harrison, Program Manager). Close collaboration was also made with Yuhua Xue, the Research Associate at CWRU and visiting scholar from the Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University, along with Jia Qu and Hao Chen, professors in the Wenzhou Medical University.

To make the 3-D material, the researchers etched radially aligned nanoholes along the length and circumference of a tiny aluminum wire, then used chemical vapor deposition to cover the surface with graphene using no metal catalyst that could remain in the structure.

"Radially-aligned nanotubes grow in the holes. The graphene that sheathes the wire and nanotube arrays are covalently bonded, forming pure carbon-to-carbon nodal junctions that minimize thermal and electrical resistance," Wang said.

The architecture yields a huge surface area, adding to the transport properties, the researchers say. Using the Brunauer, Emmett and Teller theory, they calculate the surface area of this architecture to be nearly 527 square meters per gram of material.

Testing showed the material makes an ideal electrode for highly efficient energy storage. Capacitance by area reached as high as 89.4 millifarads per square centimeter and by length, up to 23.9 millifarads per centimeter in the fiber-like supercapacitor.

The properties can be customized. With the one-step process, the material can be made very long, or into a tube with a wider or narrower diameter, and the density of nanotubes can be varied to produce materials with differing properties for different needs.

The material can be used for charge storage in capacitors and batteries or the large surface could enable storage of hydrogen. "The properties could be used for an even wider variety of applications, including sensitive sensors, wearable electronics, thermal management and multifunctional aerospace systems", Roy said.

The scientists are continuing to explore the properties that can be derived from these single 3D graphene layer fibers and are developing a process for making multilayer fibers.

###

The research was funded by a U.S. Department of Defense-Multidisciplinary University Research Initiative grant under the Air Force Office of Scientific Research, and Wenzhou Medical University.

####

For more information, please click here

Contacts:
Kevin Mayhood

216-534-7183

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Flexible Electronics

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Sensors

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Aerospace/Space

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project