Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > How 19th Century Physics Could Change the Future of Nanotechnology: University of Cincinnati physics researchers have developed a new way of using an old technique that could help build better nanotechnology

UC student Yuda Wang will present his semiconductor nanowire research at the American Physical Society meeting.
UC student Yuda Wang will present his semiconductor nanowire research at the American Physical Society meeting.

Abstract:
A new twist on a very old physics technique could have a profound impact on one of the most buzzed-about aspects of nanoscience.

How 19th Century Physics Could Change the Future of Nanotechnology: University of Cincinnati physics researchers have developed a new way of using an old technique that could help build better nanotechnology

Cincinnati, OH | Posted on March 5th, 2014

Researchers at the University of Cincinnati have found that their unique method of light-matter interaction analysis appears to be a good way of helping make better semiconductor nanowires.

"Semiconductor nanowires are one of the hottest topics in the nanoscience research field in the recent decade," says Yuda Wang, a UC doctoral student. "Due to the unique geometry compared to conventional bulk semiconductors, nanowires have already shown many advantageous properties, particularly in novel applications in such fields as nanoelectronics, nanophotonics, nanobiochemistry and nanoenergy."

Wang will present the team's research "Transient Rayleigh Scattering Spectroscopy Measurement of Carrier Dynamics in Zincblende and Wurtzite Indium Phosphide Nanowires" at the American Physical Society (APS) meeting to be held March 3-7 in Denver. Nearly 10,000 professionals, scholars and students will attend the APS meeting to discuss new research from industry, universities and laboratories from around the world.

Key to this research is UC's new method of Rayleigh scattering, a phenomenon first described in 1871 and the scientific explanation for why the sky is blue in the daytime and turns red at sunset. The researchers' Rayleigh scattering technique probes the band structures and electron-hole dynamics inside a single indium phosphide nanowire, allowing them to observe the response with a time resolution in the femtosecond range - or one quadrillionth of a second.

"Basically, we can generate a live picture of how the electrons and holes are excited and slowly return to their original states, and the mechanism behind that can be analyzed and understood," says Wang, of UC's Department of Physics. "It's all critical in characterizing the optical or electronic properties of a semiconducting nanowire."

Semiconductors are at the center of modern electronics. Computers, TVs and cellphones have them. They're made from the crystalline form of elements that have scientifically beneficial electrical conductivity properties.

Wang says the burgeoning range of semiconductor nanowire applications - such as smaller, more energy-efficient electronics - has brought rapid improvement to nanowire fabrication techniques. He says his team's research could offer makers of nanotechnology a new and highly effective option for measuring the physics inside nanowires.

"The key to a good optimization process is an excellent feedback, or a characterization method," Wang says. "Rayleigh scattering appears to be an exceptional way to measure several nanowire properties simultaneously in a non-invasive and high-quality manner."

Additional contributors to this research are UC alumnus Mohammad Montazeri; UC physics professors Howard Jackson and Leigh Smith and adjunct associate professor Jan Yarrison-Rice, all of the McMicken College of Arts and Sciences; and Tim Burgess, Suriati Paiman, Hoe Tan, Qiang Gao and Chennupati Jagadish of Australian National University.

This effort is part of substantial research on semiconductor nanowires at UC that is partially funded by the National Science Foundation. The team at UC is one of only about a half dozen in the U.S. conducting competitive research in the field. The team's big achievements in the science of small support the UC2019 Academic Master Plan by producing new ways of understanding and transforming the world through research and scholarship.

####

For more information, please click here

Contacts:
Tom Robinette
Phone: (513) 556-1825

Copyright © University of Cincinnati

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

American Physical Society (APS) meeting :

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project