Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Coupled carbon and peptide nanotubes achieved for the first time: twins nanotubes

Abstract:
CIQUS researchers (Universidade de Santiago de Compostela) obtained hybrid structures with complementary properties of nanotubes and self-assembling cyclic peptide nanotubes.

Coupled carbon and peptide nanotubes achieved for the first time: twins nanotubes

Santiago, Spain | Posted on March 1st, 2014

This work, led by CIQUS researchers Juan Granja and Javier Montenegro, describes the production of a hybrid structures composed of carbon nanotube single-walled (SWCNTs) and self-assembling cyclic peptide nanotubes (SCPNs), that can be applied in various areas biology or nanotechnology.

The results have been published in the prestigious Journal of the American Chemical Society, highlighting the complementary and synergistic properties derived from each type of nantotuboestructure.

For one side, the biocompatible nature of the peptide nanotubes would improve, among others, the adaptability of the carbon nanotubes in physiological conditions. Furthermore, the system and the complementary electrical properties are of interest for the preparation of nanometric and electronic devices free of short circuits.

Cyclic peptides self-assemble via hydrogen bonding, forming stacked tubular nanotubes, with complete control of diameter and functionalization.

Thus, by the logic design of cyclic peptide rings, it has been achieved the solubilization of carbon nanotubes in aqueous medium and, reciprocally, the carbon nanotubes increase the chances that the peptide rings interact with each other in a solvent that competes for links hydrogen as water.

The deposition of these nanoscale and complementary structures on different surfaces allows the formation of twin nanotubes having synergistic properties derived from each individual and complementary structure. Thus, for example, the formation of organized networks of peptide nanotubes on surfaces allows the alignment of the carbon nanotubes on a common axis.

Characterization by atomic force microscopy confirms hybrid different electrical properties of each nanotube (peptide: insulator; carbon: conductor) and allows the obtaining of similar insulating coated wire and hybrid nanometer-sized tubes.

Coupling of Carbon and Peptide Nanotubes. J. Montenegro, C. Vázquez-Vázquez, A. Kalinin, K. E. Geckeler, J. R. Granja.

####

For more information, please click here

Contacts:
Fernando Casal
R&D Management

Singular Research Centers Network
Center for Research in Biological Chemistry and Molecular Materials (CIQUS)
Universidade de Santiago de CompostelaCIQUS - C/ Jenaro de la Fuente s/n
15782 Santiago de Compostela - España
Tel. (+34) 881 815 782
(+34) 600 942 443

Copyright © CIQUS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Research Group: Juan Granja

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Chip Technology

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project