Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Oregon scientists offer new insights on controlling nanoparticle stability: New findings could enhance stabilizing or destabilizing nanoparticles, depending on their uses

University of Oregon chemistry professor James Hutchison has uncovered important information about the stability of nanoparticles that could help drive more precise preparation of particles or precursors for thin films.

Credit: University of Oregon
University of Oregon chemistry professor James Hutchison has uncovered important information about the stability of nanoparticles that could help drive more precise preparation of particles or precursors for thin films.

Credit: University of Oregon

Abstract:
University of Oregon chemists studying the structure of ligand-stabilized gold nanoparticles have captured fundamental new insights about their stability. The information, they say, could help to maintain a desired, integral property in nanoparticles used in electronic devices, where stability is important, or to design them so they readily condense into thin films for such things as inks or catalysts in electronic or solar devices.

Oregon scientists offer new insights on controlling nanoparticle stability: New findings could enhance stabilizing or destabilizing nanoparticles, depending on their uses

Eugene, OR | Posted on December 9th, 2013

In a project — detailed in the Nov. 27 issue of the Journal of Physical Chemistry C — doctoral student Beverly L. Smith and James E. Hutchison, who holds the Lokey-Harrington Chair in Chemistry at the UO, analyzed how nanoparticle size and molecules on their surfaces, called ligands, influence structural integrity under rising temperatures.

They focused on nanoparticles less than two nanometers in diameter — the smallest studied to date — to better understand structural stability of these tiny particles being engineered for use in electronics, medicine and other materials. Whether a nanoparticle needs to remain stable or condense depends on how they are being used. Those used as catalysts in industrial chemical processing or quantum dots for lighting need to remain intact; if they are precursors for coatings in solar devices or for printing ink, nanoparticles need to be unstable so they sinter and condense into a thin mass.

For their experiments, Smith and Hutchison produced gold nanoparticles in four well-controlled sizes, ranging from 0.9 nanometers to 1.5 nanometers, and analyzed ligand loss and sintering with thermogravimetric analysis and differential scanning calorimetry, and examined the resulting films by scanning electron microscopy and X-ray photoelectron spectroscopy. As the nanoparticles were heated at 5 degrees Celsius per minute, from room temperature to 600 degrees Celsius, the nanoparticles began to transform near 150 degrees Celsius.

The researchers found that smaller nanoparticles have better structural integrity than larger-sized particles that have been tested. In other words, Hutchison said, they are less likely to lose their ligands and bind together. "If you have unstable particles, then the property you want is fleeting," he said. "Either the light emission degrades over time and you're done, or the metal becomes inactive and you're done. In that case, you want to preserve the function and keep the particles from aggregating."The opposite is desired for Hutchison and others working in the National Science Foundation-funded Center for Sustainable Materials Chemistry, a multi-universities collaboration led by the UO and Oregon State University. Researchers there are synthesizing nanoparticles as precursors for thin films.

"We want solution precursors that can lead to inorganic thin films for use in electronics and solar industries," said Hutchison, who also is a member of the UO Materials Science Institute.

"In this case, we want to know how to keep our nanoparticles or other precursors stable enough in solution so that we can work with them, using just a tiny amount of additional energy to make them unstable so that they condense into a film -- where the property that you want comes from the extended solid that is generated, not from the nanoparticles themselves."

The research, Hutchison said, identified weak sites on nanoparticles where ligands might pop off. If only a small amount do so, he said, separate nanoparticles are more likely to come together and begin the sintering process to create thin films.

"That's a really stabilizing effect that, in turn, kicks out all these ligands on the outside," he said. "The surface area decreases quickly and the particles get bigger, but now all the extra ligands gets excluded into the film and then, over time, the ligands vaporize and go away."

The coming apart, however, is a "catastrophic failure" if protecting against sintering is the goal. It may be possible to use the findings, he said, to explore ways to strengthen nanoparticles, such as developing ligands that bind in at least two sites or avoiding volatile ligands.

The process, as studied, produced porous gold films. "A next step might be to study how to manipulate the process to get a more dense film if that is desired," Hutchison said. Understanding how nanoparticles respond to certain conditions, such as changing temperatures, he added, may help researchers reduce waste in the manufacturing process.

"Researchers at the University of Oregon are re-engineering the science, manufacturing and business processes behind critical products," said Kimberly Andrews Espy, vice president for research and innovation and dean of the UO Graduate School. "This research analyzing the structural stability of nanoparticles by Dr. Hutchison and his team has the potential to improve the engineering of electronics, medicine and other materials, helping to foster a sustainable future for our planet and its people."

Smith, the paper's lead author, received a master's degree in chemistry in 2009 from the UO. She now is a doctoral student in Hutchison's lab. During the initial stages of the research, she was supported by the NSF's Integrative Graduate Education and Research Traineeship (IGERT) program. Funding from the Air Force Research Laboratory (grant No. FA8650-05-1-5041) to Hutchison also supported the research.

Hutchison also is a member of both the Oregon Nanoscience and Microtechnologies Institute (ONAMI) and Oregon BEST (Oregon Built Environment & Sustainable Technologies Center), which are state signature research initiatives.

####

About University of Oregon
The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Follow UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience

UO Science on Twitter: http://twitter.com/UO_Research

More UO Science/Research News: http://uoresearch.uoregon.edu

For more information, please click here

Contacts:
Jim Barlow

541-346-3481

Source:
James Hutchison
professor
Department of Chemistry and Biochemistry
541-346-4228

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Thin films

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Chip Technology

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project