Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A mimic of ‘good cholesterol’ could someday treat cardiovascular and other diseases

Artery-clogging “bad cholesterol” could one day be fought with a new type of “good cholesterol” made in the lab.
Credit: iStock/Thinkstock
Artery-clogging “bad cholesterol” could one day be fought with a new type of “good cholesterol” made in the lab.

Credit: iStock/Thinkstock

Abstract:
A new type of "good cholesterol," made in the lab, could one day deliver drugs to where they are needed in the body to treat disease or be used in medical imaging, according to scientists. Their report on the high-density lipoprotein (HDL) mimic, which is easy to make in large amounts, appears in the journal ACS Nano.

A mimic of ‘good cholesterol’ could someday treat cardiovascular and other diseases

Washington, DC | Posted on October 30th, 2013

Zahi A. Fayad, Robert Langer, YongTae (Tony) Kim, Francois Fay, Willem Mulder and colleagues explain that HDL is a natural nanoparticle that carries cholesterol throughout the body. Because it acts like a scavenger, collecting cholesterol and taking it to the liver for breakdown, HDL has emerged from being simply a marker for cardiovascular disease — the number one killer of men and women in America — to being a therapeutic agent. Clinical trials are testing its potential to combat atherosclerosis, the build-up of plaques in blood vessels that can lead to heart attacks or strokes. Scientists are also exploring new ways to use it for drug delivery. But HDL is complex and comes in many varieties. It takes several labor-intensive steps to get a uniform collection of these particles with current methods, which aren't easily scaled up for clinical applications. That's why Fayad and Langer's groups devised a new and improved method for making HDL-like particles.

The scientists showed that microfluidics — the same technology that enabled the invention of inkjet printers — allowed them to make material called µHDL that looks and acts like HDL in a single, rapid step. Not only does this material offer a possible, easy new way to treat cardiovascular disease, but the researchers also attached drug compounds, as well as dyes and nanocrystals used in medical imaging (such as those used for MRIs and CT scans), to the particles.

The authors acknowledge funding from National Heart, Lung, and Blood Institute, the National Institutes of Health, the National Cancer Institute, the Prostate Cancer Foundation and the American Heart Association.

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Zahi A. Fayad, Ph.D.
Translational and Molecular Imaging Institute
Icahn School of Medicine at Mount Sinai
New York City, N.Y. 10029

or
Robert Langer, Sc.D.
David H. Koch Institute for Integrative Cancer Research
Massachusetts Institute of Technology
Cambridge, Mass. 02139


General Inquiries: Michael Bernstein

202-872-6042

Science Inquiries: Katie Cottingham, Ph.D.

301-775-8455

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

DOWNLOAD FULL-TEXT ARTICLE - “Single Step Reconstitution of Multifunctional High-Density Lipoprotein-Derived Nanomaterials Using Microfluidics”

Related News Press

Microfluidics/Nanofluidics

Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Imaging

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project