Home > Press > A mimic of ‘good cholesterol’ could someday treat cardiovascular and other diseases
![]() |
| Artery-clogging “bad cholesterol” could one day be fought with a new type of “good cholesterol” made in the lab. Credit: iStock/Thinkstock |
Abstract:
A new type of "good cholesterol," made in the lab, could one day deliver drugs to where they are needed in the body to treat disease or be used in medical imaging, according to scientists. Their report on the high-density lipoprotein (HDL) mimic, which is easy to make in large amounts, appears in the journal ACS Nano.
Zahi A. Fayad, Robert Langer, YongTae (Tony) Kim, Francois Fay, Willem Mulder and colleagues explain that HDL is a natural nanoparticle that carries cholesterol throughout the body. Because it acts like a scavenger, collecting cholesterol and taking it to the liver for breakdown, HDL has emerged from being simply a marker for cardiovascular disease — the number one killer of men and women in America — to being a therapeutic agent. Clinical trials are testing its potential to combat atherosclerosis, the build-up of plaques in blood vessels that can lead to heart attacks or strokes. Scientists are also exploring new ways to use it for drug delivery. But HDL is complex and comes in many varieties. It takes several labor-intensive steps to get a uniform collection of these particles with current methods, which aren't easily scaled up for clinical applications. That's why Fayad and Langer's groups devised a new and improved method for making HDL-like particles.
The scientists showed that microfluidics — the same technology that enabled the invention of inkjet printers — allowed them to make material called µHDL that looks and acts like HDL in a single, rapid step. Not only does this material offer a possible, easy new way to treat cardiovascular disease, but the researchers also attached drug compounds, as well as dyes and nanocrystals used in medical imaging (such as those used for MRIs and CT scans), to the particles.
The authors acknowledge funding from National Heart, Lung, and Blood Institute, the National Institutes of Health, the National Cancer Institute, the Prostate Cancer Foundation and the American Heart Association.
####
About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.
For more information, please click here
Contacts:
Zahi A. Fayad, Ph.D.
Translational and Molecular Imaging Institute
Icahn School of Medicine at Mount Sinai
New York City, N.Y. 10029
or
Robert Langer, Sc.D.
David H. Koch Institute for Integrative Cancer Research
Massachusetts Institute of Technology
Cambridge, Mass. 02139
General Inquiries: Michael Bernstein
202-872-6042
Science Inquiries: Katie Cottingham, Ph.D.
301-775-8455
Copyright © American Chemical Society
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
| Related News Press |
Microfluidics/Nanofluidics
Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||