Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene with aroma: New production method broadens the perspectives for an improved use of the "magic material" - many different forms are possible

The cover picture of the scientific journal "Advanced Materials" gives a schematic representation of the conversion of the monolayer of the complex molecule biphenyl thiol in the two-dimensional graphene crystal by electron irradiation and thermal treatment.Fig.: Advanced Materials 25 (2013). Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
The cover picture of the scientific journal "Advanced Materials" gives a schematic representation of the conversion of the monolayer of the complex molecule biphenyl thiol in the two-dimensional graphene crystal by electron irradiation and thermal treatment.

Fig.: Advanced Materials 25 (2013). Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

Abstract:
Graphene, a crystal composed of only one layer of carbon atoms arranged in a regular hexagon, is regarded as a material which is believed to be capable of performing miracles, in particular in the fields of electronics, sensor technology and display technology, but also in metrology. Only four years after the first successful preparation of graphene, its discoverers Geim and Novoselov were therefore awarded a Nobel Prize. As the original preparation method (flaking of single atomic layers of graphite) does not offer a good perspective for broad technological use, many groups of researchers are concentrating very strongly on the development of alternative manufacturing procedures. A completely new and very flexible variant has now been developed by the group of Andrey Turchanin from the University of Bielefeld in cooperation with the University of Ulm and three departments of the Physikalisch-Technische Bundesanstalt (PTB) and this has been published in the scientific journal "Advanced Materials".

Graphene with aroma: New production method broadens the perspectives for an improved use of the "magic material" - many different forms are possible

Bielefeld, Germany | Posted on October 2nd, 2013

In contrast to the conventional methods where graphene is manufactured, for example, by precipitation of carbon atoms from the gas phase or by thermal graphitization of silicon carbide, the scientists selected aromatic molecules as a starting point in this work. As substrates, both copper single-crystals and inexpensive polycrystalline copper foils were used. By irradiation with low-energy electrons and subsequent thermal annealing, it was then possible to convert a self-organized single-layer of the molecule biphenyl thiol, which had precipitated on the copper surface, into graphene.

To investigate the chemical and physical properties of the graphene manufactured in this way, different characterization methods from Ulm and Bielefeld universities and from PTB were applied, for example, scanning tunnelling microscopy, transmission electron microscopy, Raman spectroscopy as well as electric transport measurements at low temperatures and high magnetic fields. All these measurements confirm that graphene of excellent crystalline and electronic quality had actually been manufactured from the aromatic molecule. The flexibility of the electron irradiation, which is possible both over large areas and also with excellent spatial resolution at small, well-defined places, now allows graphene structures of basically any form to be manufactured, e.g. quantum dots, nanoribbons or other nano-geometries with specific functionality. The selection of the temperature in the thermal conversion step also allows the degree of crystallinity and the characteristics of the graphene depending on it to be adjusted.

Additional advantages result from the versatility of the method of self-organized coating. It can be performed with different aromatic molecules which could, for example, also contain doping atoms for electronic doping of the final product. Applied in multiple layers, so-called bi-layer or multi-layer graphene could be manufactured, whose changed electronic band structure expands the potential applications of single-layer graphene. Likewise, other substrates than the copper used here (for example other metals, semiconductors, isolators) can be used. In addition, it should also be possible to manufacture graphene on any three-dimensional surfaces, as molecular self-organization also takes place on curved surfaces. The new manufacturing method broadens the perspectives for an improved use of the "magic material" in such an impressive way that the respective publication was emphasized on the cover sheet of the August issue of the scientific journal "Advanced Materials".

####

For more information, please click here

Contacts:
Franz Josef Ahlers
PTB Department 2.6 Electric Quantum Metrology

49-531-592-2600

PD Dr. Andrey Turchanin
University of Bielefeld
Faculty of Physics
Physics of Super-molecular Systems and Surfaces
Bielefeld Institute for Biophysics and Nanoscience (BINAS)
Universitätsstr. 25
33615 Bielefeld
phone: +49(521) 106-5376

Copyright © Physikalisch-Technische Bundesanstalt (PTB)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Imaging

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Tools

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project