Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NISTís grid of quantum islands could reveal secrets for powerful technologies

Researchers created a grid of quantum dots (center) ranging from one to three phosphorus atoms deposited onto a plane embedded in silicon and studied the properties of electrons injected into the grid.

CREDIT
Wang et al./NIST
Researchers created a grid of quantum dots (center) ranging from one to three phosphorus atoms deposited onto a plane embedded in silicon and studied the properties of electrons injected into the grid. CREDIT Wang et al./NIST

Abstract:
Researchers at the National Institute of Standards and Technology (NIST) have created grids of tiny clumps of atoms known as quantum dots and studied what happens when electrons dive into these archipelagos of atomic islands. Measuring the behavior of electrons in these relatively simple setups promises deep insights into how electrons behave in complex real-world materials and could help researchers engineer devices that make possible powerful quantum computers and other innovative technologies.

NISTís grid of quantum islands could reveal secrets for powerful technologies

Gaithersburg, MD | Posted on November 18th, 2022

In work published in Nature Communications, the researchers made multiple 3-by-3 grids of precisely spaced quantum dots, each comprising one to three phosphorus atoms. Attached to the grids were electrical leads and other components that enabled electrons to flow through them. The grids provided playing fields in which electrons could behave in nearly ideal, textbook-like conditions, free of the confounding effects of real-world materials.

The researchers injected electrons into the grids and observed how they behaved as the researchers varied conditions such as the spacing between the dots. For grids in which the dots were close, the electrons tended to spread out and act like waves, essentially existing in several places at one time. When the dots were far apart, they would sometimes get trapped in individual dots, like electrons in materials with insulating properties.

Advanced versions of the grid would allow researchers to study the behavior of electrons in controllable environments with a level of detail that would be impossible for the worldís most powerful conventional computers to simulate accurately. It would open the door to full-fledged ďanalog quantum simulatorsĒ that unlock the secrets of exotic materials such as high-temperature superconductors. It could also provide hints about how to create materials, such as topological insulators, by controlling the geometry of the quantum dot array.

In related work just published in ACS Nano, the same NIST researchers improved their fabrication method so they can now reliably create an array of identical, equally spaced dots with exactly one atom each, leading to even more ideal environments necessary for a fully accurate quantum simulator. The researchers have set their sights on making such a simulator with a larger grid of quantum dots: A 5x5 array of dots can produce rich electron behavior that is impossible to simulate in even the most advanced supercomputers.

####

For more information, please click here

Contacts:
Ben Stein
National Institute of Standards and Technology (NIST)

Office: 301-209-3097

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

Quantum Physics

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

A quantum leap in mechanical oscillator technology August 11th, 2023

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Laboratories

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

News and information

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

2 Dimensional Materials

University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023

Ribbons of graphene push the materialís potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Quantum powers researchers to see the unseen September 8th, 2023

Chloride ions from seawater eyed as possible lithium replacement in batteries of the future August 11th, 2023

Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Possible Futures

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Chip Technology

University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

The present and future of computing get a boost from new research July 21st, 2023

Scientists edge toward scalable quantum simulations on a photonic chip: A system using photonics-based synthetic dimensions could be used to help explain complex natural phenomena June 30th, 2023

Quantum Computing

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Scientists edge toward scalable quantum simulations on a photonic chip: A system using photonics-based synthetic dimensions could be used to help explain complex natural phenomena June 30th, 2023

Discoveries

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Announcements

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Quantum Dots/Rods

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Research improves upon conventional LED displays: With new technology, LEDs can be more cost-efficient and last longer September 9th, 2022

Lattice distortion of perovskite quantum dots induces coherent quantum beating September 9th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project