Home > Press > Food additive enables printed materials for soft robotics
Abstract:
University of Wollogong researchers from the ARC Centre of Excellence for Electromaterials Science (ACES) and the School of Chemistry in Australia have printed materials which can actuate and strain gauge.
The research was selected as a cover in the recent Advanced Functional Materials (issue 22).
In their paper, ACES Chief Investigator Associate Professor Marc in het Panhuis and nanotechnology honours graduate Geoffrey Pidcock showed that gellan gum, a well-known food additive provides the optimum conditions for the printing of carbon nanotubes (CNT), a material at the forefront of developments in bio- and nanotechnology.
The research demonstrated that the printing process offers great flexibility over the geometry and application of the gauge and actuating material to soft substrates such as textile and gels.
Professor in het Panhuis said: "Actuators are all around us—just think of the muscles in our body which are the best known example of actuators which we use to run, catch a wave or kick a ball."
Professor in het Panhuis said that the use of gellan gum opens up possibilities for the printing of wet strain gauges and actuators for applications in soft robotics.
"Monitoring actuator motion in robotics and rehabilitation applications requires ‘soft' strain gauges rather than the currently used 'hard' metal or silicon strain gauges. Our work is an important developmental step towards the realisation of these concepts," he said.
####
For more information, please click here
Copyright © Wiley-VCH Materials Science Journals
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Link to the original paper on Wiley Online Library:
Related News Press |
News and information
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Announcements
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Food/Agriculture/Supplements
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |