Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Printed Thin Film Transistors to be discussed in Tokyo

Abstract:
Printed Thin Film Transistors to be discussed in Tokyo
by Khasha Ghaffarzadeh, Technology Analyst, IDTechEx

A diverse toolkit of electronic components can today be printed. These include batteries, antennas, memories, sensors, etc. An important building block linking all these components is the printed thin film transistor. This vital device enables logic and therefore data processing. Despite years of development however, printed transistors are not yet a commercial reality.

Printed Thin Film Transistors to be discussed in Tokyo

Cambridge, UK | Posted on August 8th, 2012

Far Asia is the primary centre for the development and production of thin film transistors, which are used in display, X-ray detectors, large-area photosensors, etc. Global companies like Samsung and LG are leading the way. This has promoted us to dedicate a session to "Printed Logic" in our Printed Electronics Asia event, www.PrintedElectronicsAsia.com, which takes place October 2-3, 2012 in Tokyo.

In this short article, we will give a brief overall assessment of printed electronics, outlining critical challenges facing printed transistors from both a market and technical prospective. This article will help set the parameters for the debate that we hope to promote in our event.

Where is the value in printing transistors?

Today, we have a rapidly increasing range of material options available for fabricating TFTs, including oxides, organics, etc. In spite of this, amorphous and polycrystalline silicon remain the dominant technologies.

The current fabrication method are all subtractive, regardless of the specifics of the deposition or annealing technique (e.g., plasma enhanced chemical vapour deposition, sputtering, excimer laser annealing, etc). This is because a photolithographic patterning technique can require more than six steps for deposing a single layer. In addition, much of the deposited material is etched away and thus wasted. This adds to both the bill of materials and the processing cost.

In contrast, printing techniques offer an additive fabrication technique. Here, a layer can be directly deposited with as little as three steps. More critically, material wastage will be minimised. These two factors indicate a potential cost saving. It is this strong rationale that underpins the drive towards printed thin film transistors.

Printing thin film transistors offer numerous other advantages too. Primary amongst them are the ability (a) to cover large areas and (b) to print on low-temperature flexible substrates such as paper. Both these attributes can enable a broad range of new markets including ultra large sensor arrays, smart packaging and point-of-sale posters, etc.
www.printedelectronicsworld.com/images/v5/pagesections/420wim/main19559.jpg

What are the challenges?

The technology is at a state where we have a range of printable semiconductor (e.g., the active channel in the transistor) at our disposal. This toolkit includes organics, oxides, CdSe, crushed silicon, liquid silicon, carbon nanotubes, nanowires, etc. None of this semiconductors offer a one-size-fits-all solution and all suffer from significant limitations, including:

Low mobility: field-effect mobility is a key figure-of-merit which determines how fast transistors can switch. Printable semiconductors typically struggle to reach the 0.5-1 cm2/Vs mark. Even reaching this value will not sufficient for many emerging applications, including OLEDs. Indeed, it may not be sufficient to displace the current incumbent technologies, such as amorphous and polycrystalline silicon, which offer 1 and >100 cm2/Vs, respectively.

Low stability: thin film transistors are interfacial devices. A poor interfacial quality (e.g., high density of defect states) will result in unstable devices whose characteristics change during operation. In addition to this, the absence of ultra-high-performance encapsulation can lead to device degradation, particularly when organic semiconductors are involved. This is a major handicap because circuits are designed to tolerate a range of characteristic variations and will cease to function once the device drifts out of the compliance range. Increasing the compliance range will significantly drive the costs up as it often requires incorporating more transistors.

Low spatial uniformity: device characteristics must remain uniform across the device surface in order to maintain a uniform brightness distribution. Therefore, the manufacturing technique must be able to reproduce the same conditions (geometry, contact, interface, etc) over large areas. This is proving to be a major challenge with printing equipment.

Dielectrics: research has been mainly focused on printed semiconductors. This, however, is only a part of the picture. We will also require reliable, pin-hole-free printable dielectrics. This is a challenge, particularly because the annealing and wetting properties of the ink must be compatible with both the under- and over-lying layers. In addition, the printed dielectric must withstand subsequent processing conditions. The outstanding questions over printed dielectrics are likely to mean that printed transistors will initially consist of hybrid structure in which only the semiconductor and the conductors are printed.

Low temperature annealing: flexible substrates tend to have a low annealing temperature. They will constrain the device processing conditions. In turn, this constrain will lead to poor device performance because often high-temperature annealing is a prerequisite for high-quality devices.

In addition to technical challenges, printed thin film transistors are actively searching for markets. In many application areas, the main go-to-market strategy is replacing an existing component/layer in a product. This is a challenge because the incumbent technology is often well-entrenched. Two primary high-volume target markets for printed transistors are:

RFID tags: here the printed versions are envisioned to replace crystalline silicon chips. The challenges however are the HF and UHF communication protocol require the integration of thousands of transistors running at 13.56 MHz and 865-960 MHz, respectively. Given the lack of uniformity, reproducibility and mobility, we assess that displacing silicon will be very difficult. In addition, printed chips will occupy more space. Finally, the RFID business is a pure cost game in which margins are very small (<1 cent) and huge volumes are required for reasonable profits.

Displays: printed thin film transistors may lower the production cost for display backplanes. The challenge here will be lifetime (i.e., change of characteristics during operation) and uniformity. Mobility will also be critical when moving towards OLED and/or 3D display. It is not clear whether printed thin film transistors can meet the technical requirements.

Our assessment is that printed thin film transistors will have to find niche markets in the first instance. These markets are likely to be on low-end disposable products. The printed circuits would require few transistor counts and would only perform simple logic. This approach is likely to require producers to design ready-to-go printed logic platforms which can be incorporated into end products.

The main challenge with this business model is that transistors are complex devices, requiring a large investment and R&D effort to optimise them. Manufactures may therefore be reluctant to invest in the absence of established large target markets.

We invite to attend our Printed Electronics Asia show, www.PrintedElectronicsAsia.com, in Tokyo to join the debate and learn about the latest developments in printed logic.

####

For more information, please click here

Contacts:
Khasha Ghaffarzadeh


Printed Electronics Asia 2012 conference
Event Manager
Mrs. Cara Harrington

Copyright © IDTechEx

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Flexible Electronics

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Breaking through the limits of stretchable semiconductors with molecular brakes that harness light June 9th, 2023

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project