Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Man-made Pores Mimic Important Features of Natural Pores: Inspired by nature, researchers design tiny, synthetic pores that mimic important features of cellular ion channels and other molecular channels

Atomic force microscopy images of artificial ion channels created by scientists. The images are of the same sample, with increasing magnification. Credit: Bing Gong, University at Buffalo
Atomic force microscopy images of artificial ion channels created by scientists. The images are of the same sample, with increasing magnification.

Credit: Bing Gong, University at Buffalo

Abstract:
Inspired by nature, an international research team has created synthetic pores that mimic the activity of cellular ion channels, which play a vital role in human health by severely restricting the types of materials allowed to enter cells.

Man-made Pores Mimic Important Features of Natural Pores: Inspired by nature, researchers design tiny, synthetic pores that mimic important features of cellular ion channels and other molecular channels

Buffalo, NY | Posted on July 22nd, 2012

The pores the scientists built are permeable to potassium ions and water, but not to other ions such as sodium and lithium ions.

This kind of extreme selectivity, while prominent in nature, is unprecedented for a synthetic structure, said University at Buffalo chemistry professor Bing Gong, PhD, who led the study.

The project's success lays the foundation for an array of exciting new technologies. In the future, scientists could use such highly discerning pores to purify water, kill tumors, or otherwise treat disease by regulating the substances inside of cells.

"The idea for this research originated from the biological world, from our hope to mimic biological structures, and we were thrilled by the results," Gong said. "We have created the first quantitatively confirmed synthetic water channel. Few synthetic pores are so highly selective."

The research will appear July 17 in Nature Communications.

The study's lead authors are Xibin Zhou of Beijing Normal University; Guande Liu of Shanghai Jiao Tong University; Kazuhiro Yamato, postdoctoral scientist at UB; and Yi Shen of Shanghai Jiao Tong University and the Shanghai Institute of Applied Physics, Chinese Academy of Sciences. Other institutions that contributed to the work include the University of Nebraska-Lincoln and Argonne National Laboratory. Frank Bright, a SUNY Distinguished Professor of chemistry at UB, assisted with spectroscopic studies.

To create the synthetic pores, the researchers developed a method to force donut-shaped molecules called rigid macrocycles to pile on top of one another. The scientists then stitched these stacks of molecules together using hydrogen bonding. The resulting structure was a nanotube with a pore less than a nanometer in diameter.

"This nanotube can be viewed as a stack of many, many rings," said Xiao Cheng Zeng, University of Nebraska-Lincoln Ameritas University Professor of Chemistry, and one of the study's senior authors. "The rings come together through a process called self-assembly, and it's very precise. It's the first synthetic nanotube that has a very uniform diameter. It's actually a sub-nanometer tube. It's about 8.8 angstroms." (One angstrom is one-10th of a nanometer, which is one-billionth of a meter.)

The next step in the research is to tune the structure of the pores to allow different materials to selectively pass through, and to figure out what qualities govern the transport of materials through the pores, Gong said.

The research was funded largely by the National Science Foundation, and X-ray work was done at the Advanced Photon Source at Argonne National Laboratory.

####

For more information, please click here

Contacts:
Charlotte Hsu

716-645-4655

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project