Home > Press > Iranian Researchers Find New Application for Nanosilica as Dye Adsorbent
Abstract:
Researchers at Iran University of Science and Technology succeeded in improving the ability of nanosilica to adsorb acidic dyes by functionalizing porous nanosilica.
Thousands of tons of various dyes are annually produced all over the world, from which 15% are wasted during the production or painting process, according to the statistics.
The wasted parts of dyes usually permeate to water sources and damage the environment. The dyes are required to be eliminated in order to purify the polluted water. Various methods have so far been proposed in order to remove the dyes, among which the adsorption method is more cost-effective.
In their studies, the researchers used porous nanosilica functionalized by ethylenediamine (SBA-3/EDA), aminopropyl (SBA-3/APTES), and pentaethylenehexamine (SBA-3/PEHA). Various investigations were carried out on such materials, suggesting that their adsorption capabilities were as follows: SBA-3/PEHA > SBA3/APTES > SBA-3/EDA > SBA-3.
According to the studies, SBA-3/PEHA was identified as a very good adsorbent of acidic dyes. The adsorption mechanism of such nanomaterials is based on the electrostatic attraction and hydrogen bond created between the adsorbent surface and acidic dyes.
The results of the observations showed that the adsorption of SBA-3/PEHA decreased when the pH value increased. The optimum temperature for adsorption process was reported to be 20°C. The amount of adsorption decreases when the temperature increases.
The research has been published in detail in July 2012 in Dyes and Pigments.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Discoveries
How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
Announcements
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Water
Taking salt out of the water equation October 7th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||