Home > Press > Iranian Researchers Find New Application for Nanosilica as Dye Adsorbent
Abstract:
Researchers at Iran University of Science and Technology succeeded in improving the ability of nanosilica to adsorb acidic dyes by functionalizing porous nanosilica.
Thousands of tons of various dyes are annually produced all over the world, from which 15% are wasted during the production or painting process, according to the statistics.
The wasted parts of dyes usually permeate to water sources and damage the environment. The dyes are required to be eliminated in order to purify the polluted water. Various methods have so far been proposed in order to remove the dyes, among which the adsorption method is more cost-effective.
In their studies, the researchers used porous nanosilica functionalized by ethylenediamine (SBA-3/EDA), aminopropyl (SBA-3/APTES), and pentaethylenehexamine (SBA-3/PEHA). Various investigations were carried out on such materials, suggesting that their adsorption capabilities were as follows: SBA-3/PEHA > SBA3/APTES > SBA-3/EDA > SBA-3.
According to the studies, SBA-3/PEHA was identified as a very good adsorbent of acidic dyes. The adsorption mechanism of such nanomaterials is based on the electrostatic attraction and hydrogen bond created between the adsorbent surface and acidic dyes.
The results of the observations showed that the adsorption of SBA-3/PEHA decreased when the pH value increased. The optimum temperature for adsorption process was reported to be 20°C. The amount of adsorption decreases when the temperature increases.
The research has been published in detail in July 2012 in Dyes and Pigments.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chemistry
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Discoveries
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Announcements
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Water
Taking salt out of the water equation October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |