Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New technique to detect and manipulate nano-objects using plasmonic nano-cavities

OpticalTrapping: SIBA plasmonic trapping using a Fabry–Pérot nanopore cavity
OpticalTrapping: SIBA plasmonic trapping using a Fabry–Pérot nanopore cavity

Abstract:
Imec researchers have presented a new approach to detect and manipulate nano-objects. The technique makes use of plasmonic excitation in nanocavities. In a demonstration, a rectangular nanocavity was used to detect the presence of 22nm beads. This approach may open new routes to create optical tweezers at the nanoscale, for ultra-accurate sensing, trapping, and arranging of nanoscale objects, such as biomolecules (e.g. proteins or DNA).

New technique to detect and manipulate nano-objects using plasmonic nano-cavities

Leuven, Belgium | Posted on March 16th, 2012

Optical trapping techniques, the so called optical tweezers, are used to trap and manipulate objects. A highly focused laser beam provides an attractive or repulsive force to physically hold and move microscopic dielectric objects (down to micrometer-scale). But this technique cannot be applied straightforward to nanoscale objects. The energy required to manipulate such small objects is simply too large in relation to their size and would destroy the objects. Recently, researchers have therefore come up with the idea to make use of the strong local fields of metal nanostructures that are excited by light.

When metal nanostructures are illuminated with visible to near-infrared light, strong local electromagnetic fields are generated. These are caused by the collective oscillations of conduction electrons - called surface plasmons. These fields can be detected and visualized e.g. through surface-enhanced Raman spectroscopy. And because the presence of nanosized objects, such as biomulecules, causes changes in the fields, this phenomenon can be used as a sensor.

But the energy of the local fields could also be used to trap and manipulate the nanosized objects. In a recent publication, imec's researchers now present a new approach that uses this technique. They combine self-induced back action (SIBA) trapping with the latest advances in nanoscale plasmon engineering.

As a demonstration, the researchers designed a resonant trap in the form of a rectangular nanopore. This form of pore allows for tuning the plamons by changing the aspect ratio. This trap was successfully tested with 22nm polystyrene beads, distinguishing between events where one bead was trapped, or those where two beads were trapped at the same time. As part of their work, the researchers also proposed a figure of merit to quantify the efficiency of their trapping mechanism and to compare it to other optical nanotweezers.

####

For more information, please click here

Contacts:
Barbara Kalkis
Maestro Marketing & PR

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

This work was published in the January edition of Nano-letters:

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Sensors

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Tools

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project