Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Particle-free silver ink prints small, high-performance electronics

Photo by
S. Brett Walker

Reactive silver ink is airbrushed onto a thin, stretchy plastic film to make a flexible silver electrode.
Photo by S. Brett Walker

Reactive silver ink is airbrushed onto a thin, stretchy plastic film to make a flexible silver electrode.

Abstract:
University of Illinois materials scientists have developed a new reactive silver ink for printing high-performance electronics on ubiquitous, low-cost materials such as flexible plastic, paper or fabric substrates.

Particle-free silver ink prints small, high-performance electronics

Champaign, IL | Posted on January 12th, 2012

Jennifer Lewis, the Hans Thurnauer Professor of Materials Science and Engineering, and graduate student S. Brett Walker described the new ink in the Journal of the American Chemical Society.

"We are really excited about the wide applicability and excellent electrical properties of this new silver ink," said Lewis, the director of the Frederick Seitz Materials Research Laboratory at the U. of I.

Electronics printed on low-cost, flexible materials hold promise for antennas, batteries, sensors, solar energy, wearable devices and more. Most conductive inks rely on tiny metal particles suspended in the ink. The new ink is a transparent solution of silver acetate and ammonia. The silver remains dissolved in the solution until it is printed, and the liquid evaporates, yielding conductive features.

"It dries and reacts quickly, which allows us to immediately deposit silver as we print," Walker said.

The reactive ink has several advantages over particle-based inks. It is much faster to make: A batch takes minutes to mix, according to Walker, whereas particle-based inks take several hours and multiple steps to prepare. The ink also is stable for several weeks.

The reactive silver ink also can print through 100-nanometer nozzles, an order of magnitude smaller than particle-based inks, an important feature for printed microelectronics. Moreover, the ink's low viscosity makes it suitable for inkjet printing, direct ink writing or airbrush spraying over large, conformal areas.

"For printed electronics applications, you need to be able to store the ink for several months because silver is expensive," Walker said. "Since silver particles don't actually form until the ink exits the nozzle and the ammonia evaporates, our ink remains stable for very long periods. For fine-scale nozzle printing, that's a rarity."

The reactive silver ink boasts yet one more key advantage: a low processing temperature. Metallic inks typically need to be heated to achieve bulk conductivity through a process called annealing. The annealing temperatures for many particle-based inks are too high for many inexpensive plastics or paper. By contrast, the reactive silver ink exhibits an electrical conductivity approaching that of pure silver upon annealing at 90 degrees Celsius.

"We are now focused on patterning large-area transparent conductive surfaces using this reactive ink," said Lewis, who also is affiliated with the Beckman Institute for Advanced Science and Technology, the Micro and Nanotechnology Lab and the department of chemical and biomolecular engineering at the U. of I.

The U.S. Department of Energy and the National Science Foundation supported this work.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073


Jennifer Lewis
217-244-4973

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Reactive Silver Inks for Patterning High-Conductivity Features at Mild Temperatures,” is available online:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project