Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Safer Nuclear Reactors Could Result from Los Alamos Research

Abstract:
‘Loading-unloading' effect of grain boundaries key to repair of irradiated metal

Safer Nuclear Reactors Could Result from Los Alamos Research

Los Alamos, NM | Posted on March 26th, 2010

Self-repairing materials within nuclear reactors may one day become a reality as a result of research by Los Alamos National Laboratory scientists.

In a paper appearing today in the journal Science, Los Alamos researchers report a surprising mechanism that allows nanocrystalline materials to heal themselves after suffering radiation-induced damage. Nanocrystalline materials are those created from nanosized particles, in this case copper particles. A single nanosized particle—called a grain—is the size of a virus or even smaller. Nanocrystalline materials consist of a mixture of grains and the interface between those grains, called grain boundaries.

When designing nuclear reactors or the materials that go into them, one of the key challenges is finding materials that can withstand an outrageously extreme environment. In addition to constant bombardment by radiation, reactor materials may be subjected to extremes in temperature, physical stress, and corrosive conditions. Exposure to high radiation alone produces significant damage at the nanoscale.

Radiation can cause individual atoms or groups of atoms to be jarred out of place. Each vagrant atom becomes known as an interstitial. The empty space left behind by the displaced atom is known as a vacancy. Consequently, every interstitial created also creates one vacancy. As these defects—the interstitials and vacancies—build up over time in a material, effects such as swelling, hardening or embrittlement can manifest in the material and lead to catastrophic failure.

Therefore, designing materials that can withstand radiation-induced damage is very important for improving the reliability, safety and lifespan of nuclear energy systems.

Because nanocrystalline materials contain a large fraction of grain boundaries—which are thought to act as sinks that absorb and remove defects—scientists have expected that these materials should be more radiation tolerant than their larger-grain counterparts. Nevertheless, the ability to predict the performance of nanocrystalline materials in extreme environments has been severely lacking because specific details of what occurs within solids are very complex and difficult to visualize.

Recent computer simulations by the Los Alamos researchers help explain some of those details.

In the Science paper, the researchers describe the never-before-observed phenomenon of a "loading-unloading" effect at grain boundaries in nanocrystalline materials. This loading-unloading effect allows for effective self-healing of radiation-induced defects. Using three different computer simulation methods, the researchers looked at the interaction between defects and grain boundaries on time scales ranging from picoseconds to microseconds (one-trillionth of a second to one-millionth of a second).

On the shorter timescales, radiation-damaged materials underwent a "loading" process at the grain boundaries, in which interstitial atoms became trapped—or loaded—into the grain boundary. Under these conditions, the subsequent number of accumulated vacancies in the bulk material occurred in amounts much greater than would have occurred in bulk materials in which a boundary didn't exist. After trapping interstitials, the grain boundary later "unloaded" interstitials back into vacancies near the grain boundary. In so doing, the process annihilates both types of defects—healing the material.

This unloading process was totally unexpected because grain boundaries traditionally have been regarded as places that accumulate interstitials, but not as places that release them. Although researchers found that some energy is required for this newly-discovered recombination method to operate, the amount of energy was much lower than the energies required to operate conventional mechanisms—providing an explanation and mechanism for enhanced self-healing of radiation-induced damage.

Modeling of the "loading-unloading" role of grain boundaries helps explain previously observed counterintuitive behavior of irradiated nanocrystalline materials compared to their larger-grained counterparts. The insight provided by this work provides new avenues for further examination of the role of grain boundaries and engineered material interfaces in self-healing of radiation-induced defects. Such efforts could eventually assist or accelerate the design of highly radiation-tolerant materials for the next generation of nuclear energy applications.

The Los Alamos National Laboratory research team includes: Xian-Ming Bai, Richard G. Hoagland and Blas P. Uberuaga of the Materials Science and Technology Division; Arthur F. Voter, of the Theoretical Division; and Michael Nastasi of the Materials Physics and Applications Division.

The work was primarily sponsored by the Los Alamos Laboratory-Directed Research and Development (LDRD) program, which, at the discretion of the Laboratory Director, invests a small percentage of the Laboratory's budget in high-risk, potentially high-payoff projects to help position the Laboratory to anticipate and prepare for emerging national security challenges. The research also received specific funding through the Center for Materials under Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences.

####

About Los Alamos National Laboratory
Science, technology, and engineering at the highest level thrive and will continue to thrive at Los Alamos National Laboratory. For science to continue to thrive, the Laboratory is committed to the national interest, anticipates the country’s future needs in science, technology, and engineering, and commits to ambitious goals that presume breakthroughs for success. The Laboratory has done this repeatedly, starting with the Manhattan Project and continuing with the Human Genome Project, the Stockpile Stewardship Program, and the Comprehensive Nuclear Test-Ban Treaty.

For more information, please click here

Contacts:
James E. Rickman
505-665-9203

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Homeland Security

The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project