Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics

Giti Khodaparast (at left) and Wei Zhou in the Nonlinear Spectroscopy Lab in ICTAS II on Virginia Tech's Blacksburg campus. Photo by Chelsea Seeber for Virginia Tech.
Giti Khodaparast (at left) and Wei Zhou in the Nonlinear Spectroscopy Lab in ICTAS II on Virginia Tech's Blacksburg campus. Photo by Chelsea Seeber for Virginia Tech.

Abstract:
Imagine you just swallowed a pill containing a miniature camera that will help your doctor collect images to diagnose a condition you’ve been battling for years. No, it’s not something from the latest science fiction or Marvel Comics movie – it’s a technique called bioimaging.

The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics

Blacksburg, VA | Posted on June 30th, 2023

While traditional methods of bioimaging such as an MRI, CT scan, or an X-ray are more commonly known, the use of nanodevices is becoming more popular. They are less invasive and provide health care professionals with a closer look deep inside tissue.

Researchers from Virginia Tech’s College of Engineering and College of Science are using their expertise in quantum photonics and nanotechnology along with funding from the Air Force Office of Scientific Research and the National Science Foundation to develop a groundbreaking nanodevice that can transform low-energy light into high-energy light across a broad spectrum. By enhancing interactions between light and matter at the nanoscale, these devices have increased versatility and are more sensitive to the bodily events happening at the device’s surface when compared with those currently used in the medical industry.

Small but mighty
The research team, including Professor Wei Zhou in the Bradley Department of Electrical and Computer Engineering and Professor Giti Khodaparast in the Department of Physics, has uncovered fundamental principles in quantum mechanics that have inspired a novel design to optimize the performance of these optical nanotransducers.

“The really exciting part of our research is the potential for these devices to make significant strides in bioimaging and biosensing,” said Zhou. “They enable researchers to simultaneously gather a variety of information at the intersection of nano and biological systems using different wavelengths of emitted light.”

Researchers will be able to see what's happening at the interface between biological systems and nanodevices, such as voltage changes in brain activities or alterations in biomolecule concentration. By transferring high-energy light from low-energy light, these nanotransducers can capture clearer images to help improve our understanding and diagnoses of various diseases and conditions.

Lifesaving technology
In addition to Zhou and Khodaparast, graduate students from both electrical and computer engineering department and the physics department have played critical roles in this cutting-edge research and have transferred that knowledge to their current work.

Seied Ali Safiabadi Tali earned his Ph.D. in electrical engineering in 2020 and has since been working as a photonics engineer at Quantum-Si.

“It’s amazing to think that the work we are doing can change people’s lives for the better,” said Safiabadi Tali. “This new technology could potentially make bioimaging clearer and allow doctors to spot diseases earlier. Earlier detection means earlier treatment which is critical for many terminal illnesses.”

As a photonics engineer at Quantum-Si, Safiabadi Tali works with a multidisciplinary team of scientists to develop a single-molecule protein-sequencing platform that can transform the scientific community's understanding of the human proteome, unlocking unprecedented insights into the human body. Safiabadi Tali's research in quantum optics, photonics, and biosensing at Virginia Tech has prepared him to continue innovating in Quantum-Si's multidisciplinary workspace.

Physics alumna Rathsara Herath, who also worked on the project, has been using her gained expertise in advanced materials characterizations in her current role as a technology development module and integration yield engineer at Intel.

“I learned a lot from this project when it comes to bioimaging,” said Herath. “The setup of our equipment in the lab needed to be very precise to get accurate data. We also had to make sure that we didn’t damage the materials with the high-powered laser systems we use, which took a lot of time and patience to get just right.”

Beyond health care
Although this novel photonics device is nanoscopic, its potential for future applications is colossal.

“The implications of our breakthrough extend well beyond the realm of health care,” said Zhou. "These resilient nanodevices are made of highly stable materials that are designed to last for extended periods and are virtually resistant to damage. By incorporating our advanced nanophotonic sensors into existing semiconductor and photonics systems, we can greatly enhance the performance of biomedical equipment and more."

Future applications include monitoring water environments in real time, diagnosing leaks in oil and gas pipelines, and detecting explosives or chemical weapons.

####

For more information, please click here

Contacts:
Suzanne Miller

540-267-4375

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New discovery aims to improve the design of microelectronic devices September 13th, 2024

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Nanomedicine

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Discoveries

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Homeland Security

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

RIT researchers build micro-device to detect bacteria, viruses: New process improves lab-on-chip devices to isolate drug-resistant strains of bacterial infection, viruses April 17th, 2020

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project