Home > Press > ‘Wet’ computing systems to boost processing power
Abstract:
A new kind of information processing technology inspired by chemical processes in living systems is being developed by researchers at the University of Southampton.
Dr Maurits de Planque and Dr Klaus-Peter Zauner at the University's School of Electronics and Computer Science (ECS) are working on a project which has just received €1.8 million from the European Union's Future and Emerging Technologies (FET) Proactive Initiatives, which recognises ground-breaking work which has already demonstrated important potential.
The researchers, Dr de Planque, a biochemist, and Dr Zauner, a computer scientist, will adapt brain processes to a 'wet' information processing scenario by setting up chemicals in a tube which behave like the transistors in a computer chip.
"What we are developing here is a very crude, minimal liquid brain and the final computer will be ‘wet' just like our brain," said Dr Zauner. "People realise now that the best information processes we have are in our heads and as we are increasingly finding that silicon has its limitations in terms of information processing, we need to explore other approaches, which is exactly what we are doing here."
The project, entitled Artificial Wet Neuronal Networks from Compartmentalised Excitable Chemical Material, which is being co-ordinated by Friedrich Schiller University Jena with other project partners, the University of the West of England, Bristol and the Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, will run for three years and involves three complementary objectives.
The first is to engineer lipid-coated water droplets, inspired by biological cells, containing an excitable chemical medium and then to connect the droplets into networks in which they can communicate through chemical signals. The second objective is to design information-processing architectures based on the droplets and to demonstrate purposeful information processing in droplet architectures. The third objective is to establish and explore the potential and limitations of droplet architectures.
"Our system will copy some key features of neuronal pathways in the brain and will be capable of excitation, self-repair and self-assembly," said Dr de Planque.
####
About University of Southampton
The University of Southampton is already one of the top 15 research universities in the UK and has achieved consistently high scores for its teaching and learning activities.
For more information, please click here
Contacts:
Sarah Watts
Media Relations Manager
Email:
Tel: 023 8059 3807
Copyright © University of Southampton
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
Chemistry
Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Govt.-Legislation/Regulation/Funding/Policy
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Possible Futures
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Chip Technology
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||