Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Synthetic Red Blood Cells Developed

Biocompatible synthetic red blood cells (sRBCs) synthesized by the UCSB team, where the shell is composed of alternate layers of hemoglobin and BSA. (Scale bar, 5 microns)
Biocompatible synthetic red blood cells (sRBCs) synthesized by the UCSB team, where the shell is composed of alternate layers of hemoglobin and BSA. (Scale bar, 5 microns)

Abstract:
Soft and synthetic red-blood-cell-like particles carry oxygen, drugs, and more…

Synthetic Red Blood Cells Developed

Santa Barbara, CA | Posted on December 28th, 2009

Scientists at UC Santa Barbara, in collaboration with scientists at University of Michigan, have developed synthetic particles that closely mimic the characteristics and key functions of natural red blood cells, including softness, flexibility, and the ability to carry oxygen.

The primary function of natural red blood cells is to carry oxygen, and the synthetic red blood cells (sRBCs) do that very well, retaining 90% of their oxygen-binding capacity after a week. The sRBCs also, however, have been shown to deliver therapeutic drugs effectively and with controlled release, and to carry well-distributed contrast agents for enhanced resolution in diagnostic imaging.

"This ability to create flexible biomimetic carriers for therapeutic and diagnostic agents really opens up a whole new realm of possibilities in drug delivery and similar applications," noted UCSB chemical engineering professor Samir Mitragotri. "We know that we can further engineer sRBCs to carry additional therapeutic agents, both encapsulated in the sRBC and on its surface."

Mitragotri, his research group, and their collaborators from the University of Michigan succeeded in synthesizing the particles by creating a polymer doughnut-shaped template, coating the template with up to nine layers of hemoglobin and other proteins, then removing the core template. The resulting particles have the same size and flexibility, and can carry as much oxygen, as natural red blood cells. The flexibility, absent in "conventional" polymer-based biomaterials developed as carriers for therapeutic and diagnostic agents, gives the sRBCs the ability to flow through channels smaller than their resting diameter, stretching in response to flow and regaining their discoidal shape upon exiting the capillary, just as their natural counterparts do.

In addition to synthesizing particles that mimic the shape and properties of healthy RBCs, the technique described in the paper can also be used to develop particles that mimic the shape and properties of diseased cells, such as those found in sickle-cell anemia and hereditary eliptocytosis. The availability of such synthetic diseased cells is expected to lead to greater understanding of how those diseases and others affect RBCs.

The discovery is described in the current online edition of Proceedings of the National Academy of Science, and will be published in the print version of the journal in the near future. UCSB graduate student Nishti Doshi was the lead author of the paper; former post-doctoral researcher Alisar Zahr (now at Harvard Medical School's Schepens Eye Research Institute), Mitragotri, and their University of Michigan collaborators Srijanani Bhaskar and professor Joerg Lahann were co-authors.

####

About College of Engineering at UC Santa Barbara
The College of Engineering at UC Santa Barbara is a global leader in bioengineering, chemical and computational engineering, materials science, nanotechnology and physics. UCSB boasts five Nobel Laureates (four in sciences and engineering) and one winner of the prestigious international Millennium Technology Prize. Our students, professors and staff thrive in a uniquely-successful interdisciplinary and entrepreneurial culture. Our professors' research is among the most cited by their peers, evidence of the significance and relevance of their work.

For more information, please click here

Contacts:
Media Contact
Tony Rairden

805.893.4301

Copyright © College of Engineering at UC Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Princeton-led team discovers unexpected quantum behavior in kagome lattice:Experiments suggest evidence for novel patterns of electronic charge distribution in a kagome material whose handedness can be manipulated with a magnetic field June 18th, 2021

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Synthetic Biology

Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021

Synthetic biology reinvents development:The research team have used synthetic biology to develop a new type of genetic design that can reproduce some of the key processes that enable creating structures in natural systems, from termite nests to the development of embryos February 8th, 2021

Machine learning takes on synthetic biology: algorithms can bioengineer cells for you: Berkeley Lab scientists develop a tool that could drastically speed up the ability to design new biological systems September 25th, 2020

Advance in programmable synthetic materials: Reading sequence of metal atoms in MOFs allows encoding of multiple chemical functions August 11th, 2020

Nanomedicine

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

'Nanodecoy' therapy binds and neutralizes SARS-CoV-2 virus June 18th, 2021

Turning the heat on: A flexible device for localized heat treatment of living tissues June 11th, 2021

Arrowhead Pharmaceuticals to Participate in Upcoming Conferences June 2nd, 2021

Announcements

Proliferation of electric vehicles based on high-performance, low-cost sodium-ion battery:A large-capacity anode material is developed for sodium-ion batteries by using low-cost silicone-based oil. This process, if commercialized, is expected to significantly reduce manufacturing June 18th, 2021

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Nanobiotechnology

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

'Nanodecoy' therapy binds and neutralizes SARS-CoV-2 virus June 18th, 2021

Turning the heat on: A flexible device for localized heat treatment of living tissues June 11th, 2021

Arrowhead Pharmaceuticals to Participate in Upcoming Conferences June 2nd, 2021

Alliances/Trade associations/Partnerships/Distributorships

Conductive, durable coatings with graphene nanotubes now available to the Turkish market June 3rd, 2021

Knowledge and Power: Oxford Instruments Plasma Technology and LayTec join forces to provide critical front end processing solutions for the production of compound semiconductor devices April 7th, 2021

CEA-Leti & Dolphin Design Report FD-SOI Breakthrough that Boosts Operating Frequency by 450% and Reduces Power Consumption by 30%: Joint Paper Presented at ISSCC 2021 Shows How New Adaptive Back-Biasing Technique Overcomes Integration Limits in Chip Design Flows February 23rd, 2021

New EU Quantum Flagship consortium launches a project on silicon spin qubits as a platform for large-scale quantum computing: The QLSI project brings together 19 top European groups to focus on developing highly scalable quantum processors in silicon, and marks a recent addition February 10th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project