Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Water Droplets Shape Graphene Nanostructures

Abstract:
Graphene -- a single-atom-thick sheet of carbon, like those seen in pencil marks -- offers great potential for new types of nanoscale devices, if a good way can be found to mold the material into desired shapes.

Chemists at the University of Illinois at Chicago say it's possible, reporting that graphene can become quite pliable using only a nanodroplet of water to do the job.

Water Droplets Shape Graphene Nanostructures

Chicago, IL | Posted on December 17th, 2009

"Up until now, it wasn't thought we could controllably fold these structures," said Petr Král, assistant professor of chemistry at UIC. "But now we know how to shape graphene by using weak forces between nanodroplets carefully positioned on graphene sheets."

Král and two of his graduate students described the process in a recent article in Nano Letters, which is highlighted in Nature's "news and views" section Dec. 17.

Engineers already cut graphene into narrow ribbons and other shapes, expanding the set of carboneous systems such as fullerenes, carbon nanotubes and nano-diamonds. Using computer simulations, Král showed that weak molecular interactions called van der Waals forces between water nanodroplets and graphene can shape it into a wide variety of forms, without the water and graphene chemically binding.

"Depending on the size of the water droplet and the shape and size of graphene flake used, we can fold it in different shapes for various applications," said Král. "It's similar to the way proteins are folded in biological cells with the help of chaperone proteins."

Král and his students discovered they could use water droplets to roll, bend, slide and shape graphene into different complex structures such as capsules, sandwiches, knots and rings -- all potential building blocks of nanodevices with unique mechanical, electrical or optical properties. By using special techniques like atomic force microscopy and carefully guided microscopic needles, water droplets and other materials can be carefully positioned on graphene to shape it into desired forms, he says.

Král's laboratory is studying potential uses of nanoscale graphene, such as ways to coat it with phospholipid molecules that would allow it to become part of biological cell membranes where it might perform specific functions. His lab is also designing graphene sheet nanoscale pores that allow the building of novel ion and molecular separation membranes for use in desalination and other applications.

While the materials he works with are inorganic, Král sees a growing trend to developing hybrid multifunctional systems that combine inorganic nanostructures with biological cellular systems.

"We're trying to detect signals from the biological world or pass signals to the biological world," he said. "In the future, perhaps proteins will evolve to interact with inorganic systems. It's a way of evolution to form a new interface, or hybrid system, working together on novel functions."

The Nano Letters article was co-authored by Niladri Patra, a UIC chemistry doctoral student and first author on the paper, and former UIC doctoral student Boyang Wang, now a post-doctoral fellow at Northwestern University.

Král's research is supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Media Contact:
Paul Francuch
(312) 996-3457

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Possible Futures

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Nanobiotechnology

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project