Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A Partnership for improved Diagnostics

Chip with insight: silicon photomultipliers could help to locate tumours
in the body more accurately - without the disadvantages and side effects
of other procedures. Credit: MPI for Physics / Masahiro Teshima
Image: MPI for Physics / Masahiro Teshima
Chip with insight: silicon photomultipliers could help to locate tumours in the body more accurately - without the disadvantages and side effects of other procedures. Credit: MPI for Physics / Masahiro Teshima Image: MPI for Physics / Masahiro Teshima

Abstract:
Max Planck Innovation and PerkinElmer conclude a licensing agreement for highly efficient detectors for medical technology

A Partnership for improved Diagnostics

Munich | Posted on August 20th, 2009

In future, it will be possible to detect malignant tumors more rapidly and more reliably - with instruments that combine magnetic resonance tomography and positron emission tomography, two conventional methods in medical diagnostics. The US company PerkinElmer Inc. develops detectors for such instruments, and will be using detector technology developed by astronomers at the Max Planck Institute of Physics for this application. Max Planck Innovation has now concluded a licensing agreement with PerkinElmer that grants the company the exclusive right to use these silicon photomultipliers (SiPM).

Medical diagnosis is often a matter of weighing up the options. This begins with the selection of the right method: Although magnetic resonance tomography (MRT) supplies pinpoint sharp images of organs, bones and connective tissue, it provides no information on the metabolic activity in individual regions. An MRT is therefore not much use when looking for tumors which reveal themselves by their particularly high sugar metabolism. But this is exactly what is detected by positron-emission tomography (PET), although it does not disclose the exact locations of the active cells. Computer tomography, on the other hand, solves this dilemma, but involves additional X-ray exposure for patients.

Detectors used by the Max Planck physicists to detect cosmic gamma radiation are now facilitating the combination of PET and MRT in one instrument. The detectors that positron-emission tomographs normally employ to count photons are not suitable for such a combination because the MRT's strong magnetic field thwarts the detection of photons. Consequently, the first integrated PE and MR tomographs operate with the aid of avalanche photodiodes (APD). These have a much lower sensitivity, are slower and consume more power than the silicon photomultipliers which were originally developed by Russian researchers at the Moscow State Engineering Physics Institute, and have finally been developed further for practical applications by the group of Max Planck researchers headed by Masahiro Teshima and Razmik Mirzoyan.

"We are convinced that the SiPM technology will be very useful in medicine and environmental technology," says Michael Ersoni, Vice President of PerkinElmer and General Manager of the global detection business. PerkinElmer and Max Planck Innovation GmbH, the technology transfer company of the Max Planck Society, have concluded an exclusive licensing agreement for the silicon photomultipliers. However, these highly sensitive detectors could be used wherever it is important to detect the minutest quantities of light. In addition to the PET diagnostic application, Ersoni gives analytical fluorescence measurements as a further example.

"PerkinElmer is the world's leading company for photodetectors and therefore the ideal industrial partner to enable us to introduce the silicon photomultipliers into medical applications and analytical applications for the environment," says Bernd Ctortecka, patent and licensing manager at Max Planck Innovation: "The global operator commands a strong market position, the necessary development capacity and the experience to introduce the technology into a market that is currently undergoing rapid development."


####

About Max Planck Gesellschaft
The research institutes of the Max Planck Society perform basic research in the interest of the general public in the natural sciences, life sciences, social sciences, and the humanities. In particular, the Max Planck Society takes up new and innovative research areas that German universities are not in a position to accommodate or deal with adequately. These interdisciplinary research areas often do not fit into the university organization, or they require more funds for personnel and equipment than those available at universities. The variety of topics in the natural sciences and the humanities at Max Planck Institutes complement the work done at universities and other research facilities in important research fields. In certain areas, the institutes occupy key positions, while other institutes complement ongoing research. Moreover, some institutes perform service functions for research performed at universities by providing equipment and facilities to a wide range of scientists, such as telescopes, large-scale equipment, specialized libraries, and documentary resources.

For more information, please click here

Contacts:
Bernd Ctortecka PhD
Max Planck Innovation, Munich
Tel.: + 49 89 29 09 19-20

Copyright © Max Planck Gesellschaft

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Possible Futures

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Tools

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Hitachi’s holography electron microscope attains unprecedented resolution:Image acquisition and defocusing correction techniques enable observations of atomic-scale magnetic fields at never-before-seen resolution July 5th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Nanobiotechnology

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project