Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > SEMATECH to Reveal Breakthroughs in Controlling Parasitic Contactt Resistance in Advanced CMOS Devices

Abstract:
Technical experts to showcase new research results in advanced gate stack, high mobility channels, and 3D interconnect TSVs at VLSI symposium.

SEMATECH to Reveal Breakthroughs in Controlling Parasitic Contactt Resistance in Advanced CMOS Devices

Kyoto, Japan | Posted on June 15th, 2009

SEMATECH's continued leadership in developing, screening, and characterizing new materials, tools, and processes that enable CMOS scaling and emerging technologies will be further demonstrated during the 2009 VLSI Technology Symposium on June 15-17, 2009, at the Rihga Royal Hotel in Kyoto, Japan.

In one area of investigation, technologists from SEMATECH's Materials and Emerging Technologies program have demonstrated significant reductions in Schottky barrier height and contact resistance that are critical for continued enhancement of device performance in future technology nodes.

As scaling continues, one of the most pressing concerns of CMOS technology beyond the 45 nm node is the contact resistance in source/drain regions, which comes from a relatively high Schottky barrier between n-type doped Si and nickel silicide. SEMATECH researchers will outline recent progress in exploring alternative interface structures, reducing the parasitic resistances of the source and drain regions and improving mobility.

"Through intense research and development efforts, SEMATECH has developed manufacturable solutions with new materials and interfaces that reduce source-drain parasitic resistance. These practical implementation approaches enable future advanced gate and high-mobility channels," said Raj Jammy, SEMATECH's vice president of emerging technologies. "We're continuing to push CMOS technology to the limits, while we test the feasibility of emerging next-generation technologies."

SEMATECH driven advancements in materials and device structure will be highlighted at the symposium, including the following:

· A newly offered focus session, "3D-System Integration," SEMATECH's director of 3D interconnect program, Sitaram Arkalgud, will deliver an invited talk highlighting the importance of 3D TSV integration for future technology generations.

· An expert panel discussion, "Key Technology Options for 16 nm CMOS and Beyond - Breaking the Barriers" will include SEMATECH's Raj Jammy.

· The panel "Is TSV 3D LSI's and Packaging Finally Ready or Is It Just Another Fantasy?," co-moderated by Sitaram Arkalgud, will address the question of which applications are driving the development of TSVs.

Additionally, experts from SEMATECH's Materials and Emerging Technologies program will present six technical papers:

* Gate First High-k/Metal Gate Stacks with Zero SiOx Interface Achieving EOT=0.59nm for 16nm Application* - Demonstrates for the first time a HfOx films with a zero low-k SiOx interface has better scalability than exotic higher-k materials, and is a practical, scalable option for today's industry-standard Hf-based high-k films.**

*V**th** Variation and Strain Control of High Ge% Thin SiGe Channels by Millisecond Anneal Realizing High Performance pMOSFET Beyond 16nm Node* - Explores key parameters for controlling threshold voltage variation and strain maintenance of gate first SiGe channel pMOSFETs.**

*Selective Phase Modulation of NiSi Using N-Ion Implantation for High Performance Dopant- Segregated Source/Drain n-Channel MOSFETs* - Investigates dual phase-modulated Ni silicide for reducing the Schottky barrier and series resistance in dopant-segregated source/drain nMOSFETs.

*CMOS Band-Edge Schottky Barrier Heights Using Dielectric-Dipole Mitigated (DDM) Metal/Si for Source/Drain Contact Resistance Reduction* -* *Demonstrates for the first time Schottky barrier height tuning using interfacial SiO2 and dual high-k dielectrics.

**A Scalable and Highly Manufacturable Single Metal Gate/High-k CMOS Integration for Sub-32nm Technology for LSTP Applications* - Outlines a simple, scalable gate-first integration option for manufacturing high-k metal gate CMOS transistors targeted for sub-32nm low standby power applications. **

*Mechanisms for Low On-State Current of Ge (SiGe) nMOSFETs: A Comparative Study on Gate Stack, Resistance, and Orientation-Dependent Effective Masses* - Reports the results of a systematic study to understand the low drive currents observed in Ge-based nMOSFETs.**

The International Symposium on VLSI Technology, Technology and Circuits is sponsored by the IEEE Electron Devices and Solid-State Circuits societies and the Japan Society of Applied Physics in cooperation with the Institute of Electronics, Information and Communication Engineers. VLSI Japan is one of many industry forums SEMATECH uses to collaborate with scientists and engineers from corporations, universities, and other research institutions, many of whom are research partners.

####

About SEMATECH
For over 20 years, SEMATECH® (*www.sematech.org*), the global consortium of
leading semiconductor manufacturers, has set global direction, enabled
flexible collaboration, and bridged strategic R&D to manufacturing. Today,
we continue accelerating the next technology revolution with our
nanoelectronics and emerging technology partners.

For more information, please click here

Contacts:
Erica McGill
SEMATECH | Media Relations
257 Fuller Road | Suite 2200 | Albany, NY | 12203
o: 518-649-1041
m: 518-487-8256

Copyright © SEMATECH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Chip Technology

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Events/Classes

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project