Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Revolutionising the diagnosis of serious disease

Abstract:
Revolutionary ultrasonic nanotechnology that could allow scientists to see inside a patient's individual cells to help diagnose serious illnesses is being developed by researchers at The University of Nottingham.

Revolutionising the diagnosis of serious disease

Nottingham, UK | Posted on June 2nd, 2009

The new technique would utilise ultrasound technology — more commonly used to look at whole bodies such as fetal scanners — to look inside cells. The components of the new technology would be many thousand times smaller than current systems.

The technology would be tiny enough to allow scientists to see inside and image individual cells in the human body, which would further our understanding of the structure and function of cells and could help to detect abnormalities to diagnose serious illnesses such as some cancers.

The work by the Ultrasonics Group in the Division of Electrical Systems and Optics has been deemed so potentially innovative it has recently been awarded a £850,000 five-year Platform Grant by the Engineering and Physical Sciences Research Council (EPSRC).

Ultrasound refers to sound waves that are at a frequency too high to be detected by the human ear, typically 20 kHz and above. Medical ultrasound uses an electrical transducer the size of a matchbox to produce sound waves at much higher frequencies, typically around 100-1000 times higher to probe bodies.

The Nottingham researchers are aiming to produce a miniaturised version of this technology, with transducers so tiny that you could fit 500 across the width of one human hair which would produce sound waves at frequencies a thousand times higher again, in the GHz range.

Dr Matt Clark of the Ultrasonics Group, said: "By examining the mechanical properties inside a cell there is a huge amount that we can learn about its structure and the way it functions. But it's very much a leap into the unknown as this has never been achieved before.

"One of the reasons for this is that it presents an enormous technical challenge. To produce nano-ultrasonics you have to produce a nano-transducers, which essentially means taking a device that is currently the size of a matchbox and scaling it down to the nanoscale. How do you attach a wire to something so small?

"Our answer to some of these challenges is to create a device that works optically — using pulses of laser light to produce ultrasound rather than an electrical current. This allows us to talk to these tiny devices."

The new technology may also allow scientists to see objects even smaller than optical microscopes and be so sensitive they may be able to measure single molecules.

In addition to medical applications, the new technology would have important uses as a testing facility for industry to assess the integrity and quality of materials and to detect tiny defects which could have an impact on performance or safety.

Ultrasonics is currently used in applications such as testing landing gear components in the aero industry for cracks and damage which may not be immediately visible or may develop with use.

The group is also looking at developing new inspection techniques for inspecting engineering metamaterials — advanced composites that are currently impossible to inspect with ultrasound. These materials offer huge performance advantages allowing radical new engineering but can't be widely used because of the difficulty of inspection.

Dr Clark added: "We are also applying our technology to nanoengineering because we have to match the enormous growth in nanotechnology with techniques to inspect the nanoworld. As products and their components become ever tinier, the testing facilities for those also need to be scaled down accordingly.

In NEMS (nanoelectromechanical) and MEMS (microelectromechanical) based machines there is an increasing demand for testing facilities which offer the same capabilities as those for real-world sized devices."

####

About University of Nottingham
The University of Nottingham is ranked in the UK's Top 10 and the World's Top 100 universities by the Shanghai Jiao Tong (SJTU) and Times Higher (THE) World University Rankings.

More than 90 per cent of research at The University of Nottingham is of international quality, according to RAE 2008, with almost 60 per cent of all research defined as ‘world-leading’ or ‘internationally excellent’. Research Fortnight analysis of RAE 2008 ranks the University 7th in the UK by research power. In 27 subject areas, the University features in the UK Top Ten, with 14 of those in the Top Five.

The University provides innovative and top quality teaching, undertakes world-changing research, and attracts talented staff and students from 150 nations. Described by The Times as Britain's “only truly global university”, it has invested continuously in award-winning campuses in the United Kingdom, China and Malaysia. Twice since 2003 its research and teaching academics have won Nobel Prizes. The University has won the Queen's Award for Enterprise in both 2006 (International Trade) and 2007 (Innovation — School of Pharmacy), and was named ‘Entrepreneurial University of the Year’ at the Times Higher Education Awards 2008.

Nottingham was designated as a Science City in 2005 in recognition of its rich scientific heritage, industrial base and role as a leading research centre. Nottingham has since embarked on a wide range of business, property, knowledge transfer and educational initiatives (www.science-city.co.uk) in order to build on its growing reputation as an international centre of scientific excellence. The University of Nottingham is a partner in Nottingham: the Science City.

For more information, please click here

Contacts:
Dr Matt Clark
+44 (0)115 951 5536


Lindsay Brooke
Media Relations Manager

+44 (0)115 951 5751
Location: King's Meadow Campus

Copyright © University of Nottingham

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NEMS

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

One string to rule them all April 17th, 2018

Possible Futures

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Nanobiotechnology

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project