Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Next Generation Nanofilms Created

Abstract:
New research described in AIP's the Journal of Chemical Physics may lead to better molecular electronics, ultra-thin materials, and understanding of proteins in the human body.

Next Generation Nanofilms Created

College Park, MD | Posted on April 14th, 2009

With the human genome in hand, biochemists have cataloged the 3-D structures of thousands of proteins isolated from living cells. But one important class of proteins -- those stuck in the cell membranes -- has proven difficult to extract and study in 3-D crystals. Now an international team of scientists has developed a way to train such molecules to line up neatly on the surface of water in thin, tissue-like layers called nanofilms. This technique should allow biochemists to better see and study the molecules and may lead to a new generation of molecular electronics and ultra-thin materials only one molecule thick.

"To the best of our knowledge, this is the first time aligned films less than a nanometer thick have been produced," say Iftach Nevo, a Marie Curie fellow at the University of Aarhus in Denmark, and Leslie Leiserowitz of the Weizmann Institute of Science in Israel. Together with their colleagues at these institutions and at the Max-Planck Institute of Colloids and Interfaces in Germany and Northwestern University in Evanston, they describe their research in the 14 April 2009 issue of The Journal of Chemical Physics, published by the American Institute of Physics.

One way of creating a nanofilm is to build it on the surface of water. First, the building blocks of the film are dissolved in a volatile substance. When a drop of this solution is splashed onto water, the solvent evaporates. The building blocks left floating on the water interact with each other and spontaneously come together -- like soap scum in a bathtub -- to create a thin crystalline layer.

The shortcoming of this technique is that the thin crystals in the film created will be a mess. Like a mob in a dance club, molecules floating on a surface tend to spin around chaotically with little regard for order. Different patches of molecules will point different, random directions. Because the orientation of these molecules dictates the electrical, magnetic, and optical properties of the final film, these jumbled regions are difficult to develop into useful technologies. They are also difficult to analyze using imaging techniques like X-ray diffraction.

To force the molecules to line up, the team blasted them with nanosecond laser pulses. These pulses create an electric field that interacts with the molecules, rotating them slowly. The electric field associated with these laser pulses is polarized, filtered so that all of the light waves vibrate in the same direction. Molecules caught in the laser feel most stable when they line up along this direction, a process analogous to the needle in a compass swinging to line up with the Earth's magnetic field. Eventually, this forms an aligned film with long range order.

The technique has not been completely perfected yet. Its success rate is about 30 percent, but the group believes that a better understanding of what is happening during the evaporation process and how the molecules interact with each other just before solidifying into a film will improve the efficiency.

When these molecules line up in a stable 2-D layer, their structures can be seen with X-ray imaging techniques normally used on 3-D crystals. "Alignment should enhance the X-ray diffraction intensity by more than two orders of magnitude allowing more detailed structure elucidations," say Nevo and Leiserowitz. The technique could be useful for studying molecules that cannot be easily crystallized in three dimensions -- cell membrane proteins are only one example.

It could also be useful for creating 3-D crystals with aligned structures. The 2-D layer can be used to seed the growth of these crystals, providing a stage on which this growth can be monitored using X-ray diffraction.

Another application is molecular electronics, like field-effect transistors, that require ordered molecules. Also interesting is an emerging class of solar cell technologies that are trying to copy nature by reverse-engineering photosynthesis. The ability to align the molecules in these devices will be important to their effectiveness, explains team member Tamar Seideman of Northwestern University.

Because the technique should work with a variety of molecules, it may pave the way for brand new kinds of self-assembling nanomaterials. "The international team that produced this paper is outstanding, and this is one of those papers that will likely spawn a number of novel applications that haven't been discovered yet," says Edward Castner of Rutgers University, Associate Editor for The Journal of Chemical Physics.

The article "Laser-Induced Self Assembly on Water Surfaces" by Iftach Nevo et al will be published online on April 14, 2009. Journalists can obtain a free copy by emailing

ABOUT THE JOURNAL

The Journal of Chemical Physics, published by the American Institute of Physics (AIP), contains concise and definitive reports of significant research in methods and applications of chemical physics. Innovative research in traditional areas of chemical physics such as spectroscopy, kinetics, statistical mechanics, and quantum mechanics continue to be areas of interest to readers of JCP. In addition, newer areas such as polymers, materials, surfaces/interfaces, information theory, and systems of biological relevance are of increasing importance. See: jcp.aip.org.

####

About American Institute of Physics (AIP)
The American Institute of Physics (AIP) is a not-for-profit membership corporation chartered in 1931 for the purpose of advancement and diffusion of the knowledge of physics and its application to human welfare. An umbrella organization for 10 Member Societies, AIP represents over 134,000 scientists, engineers and educators and is one of the world's largest publishers of physics journals. A total-solution provider of publishing services, AIP also publishes 12 journals of its own (many of which have the highest impact factors in their category), two magazines, and the AIP Conference Proceedings series. Its online publishing platform Scitation (registered trademark) hosts more than 1,000,000 articles from more than 175 scholarly journals, as well as conference proceedings, and other publications of 25 learned society publishers.

For more information, please click here

Contacts:
Devin Powell, AIP
(301) 209-3099

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Nanobiotechnology

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project