Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact

Non-uniform formation mechanism revealed

CREDIT
COPYRIGHT (C) TOYOHASHI UNIVERSITY OF TECHNOLOGY. ALL RIGHTS RESERVED.
Non-uniform formation mechanism revealed CREDIT COPYRIGHT (C) TOYOHASHI UNIVERSITY OF TECHNOLOGY. ALL RIGHTS RESERVED.

Abstract:
Overview

Tools coated with diamond film (diamond-coated tools) are used for difficult-to-machine materials such as CFRP. In the manufacture of diamond-coated tools, a pretreatment is required to remove cobalt from the tool using a liquid in order to achieve a uniform diamond film surface. However, there are concerns about the environmental impact of liquid waste from liquid pretreatment (wet processing), and there is a need to develop a process that does not use liquids (dry processing).

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact

Toyohashi, Japan | Posted on March 24th, 2023

A research team consisting of master’s student Yoshinori Saiki, Assistant Professor Takahiro Bando, Lecturer Toru Harigai, Professor Hirofumi Takikawa from the Department of Electrical and Electronic Information Engineering at Toyohashi University of Technology, and others has revealed the mechanism by which cobalt makes the diamond film surface non-uniform with the aim of developing a pretreatment that does not require wet processing. In particular, the team found that carbon filaments cause non-uniform formation in smooth, low-friction nanocrystalline diamond films, and that inhibition of carbon filaments is key (Fig. 1). This study was conducted in collaboration with OSG Corporation (a leading company in the Higashimikawa region) and Nagaoka University of Technology (has strong ties with our university), making it a unique research project for Toyohashi University of Technology.



Details

Tools coated with diamond film (diamond-coated tools) are used for difficult-to-machine materials. A typical example of difficult-to-machine materials is carbon fiber-reinforced plastic (CFRP), which is used as a light and hard material to reduce the weight of aircraft and automobile bodies.

As a base material of tools for depositing diamond films, cemented tungsten carbide with cobalt binder is usually used. And hot filament chemical vapor deposition (HF-CVD) is used as the film deposition technique. Figure 2 shows the film deposition process. When diamond film is deposited on cemented tungsten carbide by HF-CVD, it is known that the quality of diamond-coated tools deteriorates as the diamond film becomes non-uniform due to cobalt grains. Therefore, a pretreatment is required to remove the cobalt on the cemented tungsten carbide with liquid. However, there are concerns about the environmental impact of liquid waste from liquid treatment (wet processing), and there is a need to develop a process that does not use liquids (dry processing). In this study, we initially revealed the mechanism by which cobalt makes the diamond film surface non-uniform with the aim of developing a pretreatment that does not require wet processing.

There are two types of diamond films deposited on tools: microcrystalline diamonds and nanocrystalline diamonds. Previous research has proposed a mechanism for non-uniform formation only for microcrystalline diamonds. However, there were no findings about nanocrystalline diamonds, which are considered to be smooth, have little friction, and be more suitable for tools. In this study, we revealed the non-uniform formation mechanism for nanocrystalline diamonds as well as microcrystalline diamonds with time-resolved observation of the deposition process for microcrystalline diamonds and nanocrystalline diamonds. In particular, in nanocrystalline diamonds, the carbon filaments lift particles on the tungsten carbide substrate (Fig. 3), making the substrate non-uniform, thereby causing non-uniform formation.



Future Outlook

In this study, we showed that it is important to inhibit carbon filament growth in the initial stage of deposition in order to inhibit the non-uniform formation of nanocrystalline diamond films in dry processing. In the future, we plan to develop a deposition technique using HF-CVD in a high-temperature environment that can inhibit the growth of carbon filaments. Furthermore, after establishing a uniform formation process for nanocrystalline diamond films, we plan to apply the process to actual tools and investigate their machining performance.

####

For more information, please click here

Contacts:
Yoko Okubo
Toyohashi University of Technology (TUT)

Office: 81-532-44-6975

Copyright © Toyohashi University of Technology (TUT)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

News and information

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Thin films

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Stress-free path to stress-free metallic films paves the way for next-gen circuitry: Optimized sputtering technique helps minimize stress in tungsten thin films July 4th, 2021

Possible Futures

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Discoveries

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Materials/Metamaterials/Magnetoresistance

Ultrafast lasers for materials processing August 11th, 2023

Ribbons of graphene push the material’s potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023

Understanding the diverse industrial applications of materials science: Materials Science A Field of Diverse Industrial Applications July 21st, 2023

A non-covalent bonding experience: Scientists discover new structures for unique hybrid materials by altering their chemical bonds July 21st, 2023

Announcements

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Tools

New single-photon Raman lidar can monitor for underwater oil leaks: System could be used aboard underwater vehicles for many applications June 30th, 2023

Research breakthrough could be significant for quantum computing future: Irish-based scientists confirm crucial characteristic of new superconductor material June 30th, 2023

Researchers develop innovative tool for measuring electron dynamics in semiconductors: Insights may lead to more energy-efficient chips and electronic devices March 3rd, 2023

Novel microscope developed to design better high-performance batteries: Innovation gives researchers inside view of how batteries work February 10th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project