Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New filtering technology has environmental, industrial applications

Modified filter
An oily substance called hexadecane beads up on this new type of membrane created by Purdue materials engineers to separate oil from water. If perfected, the new type of filter might be used for environmental cleanup, water purification and industrial applications. The researchers attached their material to a glass filter commonly used in laboratory research, and the modified filter, pictured here, works by attracting water while repelling oil, traits that are usually mutually exclusive. (Purdue School of Materials Engineering photo)
Modified filter
An oily substance called hexadecane beads up on this new type of membrane created by Purdue materials engineers to separate oil from water. If perfected, the new type of filter might be used for environmental cleanup, water purification and industrial applications. The researchers attached their material to a glass filter commonly used in laboratory research, and the modified filter, pictured here, works by attracting water while repelling oil, traits that are usually mutually exclusive. (Purdue School of Materials Engineering photo)

Abstract:

Materials engineers have created a new type of membrane that separates oil from water and, if perfected, might be used for environmental cleanup, water purification and industrial applications.

New filtering technology has environmental, industrial applications

WEST LAFAYETTE, IN | Posted on November 18th, 2008

The new technology would last longer than conventional filters for separating oil from water and works by attracting water while beading oil, traits that are usually mutually exclusive. Researchers attached the material to a glass filter commonly used in laboratory research.

"We take mixtures of oil dispersed in water and run them through these filters, and we are getting 98 percent separation," said Jeffrey Youngblood, an assistant professor of materials engineering at Purdue University. "This is pretty good because if you don't modify the glass filters with our material essentially all the oil goes through. If you modify it with our material, then almost none of the oil goes through."

Findings were detailed in a paper that appeared online in October in the Journal of Colloid and Interface Science. The paper, which was written by Youngblood and materials engineering doctoral student John A. Howarter, also will appear in an upcoming print edition of the journal.

The findings demonstrate how an oily substance called hexadecane beads up on the membrane while water passes through.

The membrane consists of a layer of material called polyethylene glycol, and each molecule is tipped with a Teflon-like "functional group" made with fluorine. Water molecules are attracted to the polyethylene glycol, yet pass through the Teflon-like layer, which acts as a barrier to the oil molecules.

The researchers have tested the material with solutions containing oil suspended in water, similar to concentrations existing in oil spills and other environmental cleanup circumstances.

"To clean up an oil spill, for example, you could run contaminated water through a bunch of these filters to remove the oil," Youngblood said.

Such filters also might be used in other cleanup applications, such as removing oil from a ship's bilge water or cleaning wastewater contaminated with oil.

The technology might be used in a water-purification technology called reverse osmosis, which now requires a "pre-filter" to remove oil. This "oil coalescence filter" is needed to prevent oil from reaching the reverse osmosis membrane, which is ruined by oil. These conventional oil coalescence filters, however, must be replaced regularly. As water flows through the system, oil sticks to the filters, eventually rendering them ineffective.

The new technology, however, would not need to be replaced as frequently because oil does not stick to the filtration material. Instead, the oil droplets could be skimmed off through a commonly used industry technique called cross-flow filtration.

"When the oil-in-water dispersion contacts the filter surface, the oil coalesces to form big droplets. If the mixture is poured onto the filter, the oil forms on top of the material like a layer of cream," Youngblood said.

When a fluid lands on the surface of the material, it forms beads having a distinctive curvature determined by the "contact angle" of the substance. The higher the contact angle, the more a material is likely to form beads. Lowering the contact angle enough prevents substances from beading.

"This material maximizes oil's contact angle while minimizing water's contact angle, allowing water to flow through a filter while holding back the beaded oil," Youngblood said.

A key advantage of the new approach over some conventional methods is that it separates oil from water without using "nanoporous" filters. Filters containing extremely small pores require the water to be pushed through at high pressure, which consumes energy.

"One big problem is that if you are forcing stuff through very small pores it takes a lot of pressure," Youngblood said. "As the pores go down in size, the pressure goes way up. So, ideally you would want to use microfiltration instead of nanofiltration."

The new material contains pores between 10 and 174 microns, or millionths of a meter. Because the pores are relatively large, oil-contaminated water would not have to be pumped through.

"Microfiltration ordinarily works well to remove particles but really for nothing else, meaning it will not remove oil from water," Youngblood said. "The pores are just too large, and the oil passes right through."

The new material, however, efficiently separates oil from water even though the pores are large, he said.

The membranes are said to be amphiphilic, meaning they are made of molecules with two ends - one end attracts water while the other end attracts oils and grease.

Future work may explore whether the filter works for solutions containing mostly oil and small amounts of water. Because crude oil extracted in commercial drilling operations initially contains some water, such a filter might have applications in the oil industry. Future research also will involve finding a substitute for the glass filters, which are not practical for commercial membranes.

"You would probably use fiberglass, but we are also looking at other technologies, such as a new nylon that has the right properties," Youngblood said.

A patent is pending on the technology.

The same technology also might be used to create antifogging goggles and self-cleaning eyeglasses by not allowing water to form beads on surfaces. In previous work by the same researchers, self-cleaning and antifogging behavior has been demonstrated in experiments using glass surfaces coated with the material. Eyeglasses and goggles used by skiers are two obvious potential applications, along with automotive windshields.

####

For more information, please click here

Contacts:
Writer: Emil Venere, (765) 494-4709,

Source: Jeffrey Youngblood, (765) 496-2294,

Purdue News Service: (765) 494-2096;

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project