Home > Press > Nano-Proprietary, Inc. and Universitaet Stuttgart Advance the Application of Carbon Nanotubes for Flexible Electronics
Abstract:
he Chair of Display Technology, Universitaet Stuttgart, and Nano-Proprietary, Inc.'s (OTCBB:NNPP) subsidiary Applied Nanotech, Inc. ("ANI") announce significant advancement in the application of carbon nanotubes for the flexible electronics industry.
The Chair of Display Technology, Universitaet Stuttgart, and Nano-Proprietary, Inc.'s (OTCBB:NNPP) subsidiary Applied Nanotech, Inc. ("ANI") announce significant advancement in the application of carbon nanotubes for the flexible electronics industry. ANI has been performing research and development in collaboration with the Chair of Display Technology, Universitaet Stuttgart to develop high performance carbon nanotube thin film transistors (TFTs) suitable for use in the flexible electronics industry. These devices are at the core of displays, electronic circuits, sensors, memory chips, and other applications that are transitioning from rigid substrates, such as silicon and glass, to flexible substrates. ANI and the Universitaet Stuttgart have worked together to increase the fabrication yield of carbon nanotube TFTs using ANI's proprietary printing-like method of carbon nanotube deposition. The TFTs exceed an on/off ratio of five orders of magnitude and achieve the electron mobility necessary for their utilization for low temperature plastic-based substrates.
At the last Society for Information Display (SID) International Symposium, held in May 2008, the Chair of Display Technology of Universitaet Stuttgart presented the world's first full color active matrix LCD where ITO as transparent conductive film (TCF) was completely replaced by random carbon nanotube (CNTs) networks. The display has a qVGA resolution (320xRGBx240) at 4" diagonal. The CNT networks are deposited by spray coating from suspension, which replaces a costly vacuum process. This demonstrates for the first time the applicability of CNTs as TCF in a state-of-the-art amorphous silicon active matrix process. It also gives a great perspective for future flexible displays, since CNT networks are much more reliable in flexible applications than the amorphous ITO. The complete display, including AM-backplane, color filters, and a dedicated addressing system was developed designed and fabricated at the Universitaet of Stuttgart.
"The collaboration with the Universitaet Stuttgart is very productive. Their expertise and facilities for microelectronic processes are well-known and are very suitable for our need to transition from an idea to a proof of concept," said Dr. Zvi Yaniv, Chief Executive Officer of Applied Nanotech.
"Our cooperation with Applied Nanotech, Inc. is an excellent and very positive experience. Their extensive CNT TFT process know how was instrumental for kick-starting the CNT TFT work in our lab, which is an ideal extension of our pre-existing CNT-TCF efforts." said Prof. Dr.-Ing. Norbert Fruehauf, Chair of Display Technology University of Stuttgart.
####
About Nano-Proprietary, Inc.
Nano-Proprietary, Inc. is a holding company consisting of two wholly owned operating subsidiaries. Applied Nanotech, Inc. is a premier research and commercialization organization dedicated to developing applications for nanotechnology with an extremely strong position in the fields of electron emission applications from carbon film/nanotubes, sensors, functionalized nanomaterials, and nanoelectronics. Electronic Billboard Technology, Inc. (EBT) possesses technology related to electronic digitized sign technology. The Companies have over 250 patents or patents pending. Nano-Proprietary's business model is to license its technology to partners that will manufacture and distribute products using the technology. Nano-Proprietary's website is www.nano-proprietary.com.
SAFE HARBOR STATEMENT
This press release contains forward-looking statements that involve risks and uncertainties concerning Nano-Proprietary's business, products, and financial results. Actual results may differ materially from the results predicted. More information about potential risk factors that could affect our business, products, and financial results are included in Nano-Proprietary's annual report on Form 10-K for the fiscal year ended December 31, 2007, and in reports subsequently filed by Nano-Proprietary with the Securities and Exchange Commission ("SEC"). All documents are available through the SEC's Electronic Data Gathering Analysis and Retrieval System (EDGAR) at www.sec.gov or from Nano-Proprietary's website listed below. Nano-Proprietary hereby disclaims any obligation to publicly update the information provided above, including forward-looking statements, to reflect subsequent events or circumstances.
For more information, please click here
Contacts:
Doug Baker
Chief Financial Officer
Nano-Proprietary, Inc.
248.391.0612
Copyright © Marketwire
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
Thin films
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Display technology/LEDs/SS Lighting/OLEDs
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
Chip Technology
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Memory Technology
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Sensors
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||