Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotube membranes open possibilities for cheaper desalinization

Abstract:
More permeable nanotube membranes could reduce the energy costs of desalination by up to 75 percent compared to conventional membranes used in reverse osmosis

Nanotube membranes open possibilities for cheaper desalinization

Posted on May 18, 2006

A nanotube membrane on a silicon chip the size of a quarter may offer a cheaper way to remove salt from water.

Researchers at the Lawrence Livermore National Laboratory have created a membrane made of carbon nanotubes and silicon that may offer, among many possible applications, a less expensive desalinization.

The nanotubes, special molecules made of carbon atoms in a unique arrangement, are hollow and more than 50,000 times thinner than a human hair. Billions of these tubes act as the pores in the membrane. The super smooth inside of the nanotubes allow liquids and gases to rapidly flow through, while the tiny pore size can block larger molecules. This previously unobserved phenomenon opens a vast array of possible applications.

The team was able to measure flows of liquids and gases by making a membrane on a silicon chip with carbon nanotube pores making up the holes of the membrane. The membrane is created by filling the gaps between aligned carbon nanotubes with a ceramic matrix material. The pores are so small that only six water molecules could fit across their diameter.

“The gas and water flows that we measured are 100 to 10,000 times faster than what classical models predict,” said Olgica Bakajin, the Livermore scientist who led the research. “This is like having a garden hose that can deliver as much water in the same amount of time as fire hose that is 10 times larger.”

The research resulted from collaboration between Olgica Bakajin and Aleksandr Noy, who were both recruited to Lawrence Livermore Lab as “Lawrence Fellows” – the Laboratory’s initiative to bring in young talented scientists. The principal contributors to the work are postdoctoral researcher Jason Holt and Hyung Gyu Park, a UC Berkeley mechanical engineering graduate student and student employee at Livermore.

Other LLNL co-authors included Yinmin Wang, staff scientist, Michael Stadermann, postdoctoral researcher, and Alexander Artyukhin, graduate student employee. The team collaborated with UC Berkeley’s professor of mechanical engineering Costas Grigoropoulos. David Eaglesham, now at Applied Materials, also contributed in the early stages of this work.

Membranes that have carbon nanotubes as pores could be used in desalinization and demineralization. Salt removal from water, commonly performed through reverse-osmosis, uses less permeable membranes, requires large amounts of pressure and is quite expensive. However, these more permeable nanotube membranes could reduce the energy costs of desalination by up to 75 percent compared to conventional membranes used in reverse osmosis.

Carbon nanotubes are a unique platform for studying molecular transport and nanofluidics. Their nanometer-size, atomically smooth surfaces and similarity to cellular water transport channels make them exceptionally suited for this purpose.

“Since water does not wet the outside surface of carbon nanotubes, we were skeptical that water would enter into them, let alone flow really fast,” Bakajin said. “But the molecular dynamics simulations in the literature predicted fast flow, so we wanted to test the predictions.”

“The first time we set up an experiment with water, we left it overnight thinking that the water level above the membrane would not budge,” Park said. “Instead, we came back in the morning and there was a little puddle on the floor under the membrane.”

Holt added: “The first thing that came to mind was that the membrane broke, but fortunately it didn't. The membrane allowed water through and blocked gold nanoparticles that were just a bit larger than the nanotube pores.”

Simulations of gas and water transport through carbon nanotubes predict that each should flow rapidly. Gas molecules should bounce off its atomically smooth surface like billiard balls. Water molecules should slide through either because of the “slipperiness” of the carbon nanotube surface or due to molecular ordering induced by spatial confinement. The experiments performed by the LLNL team demonstrated these predicted rapid flows of gas and water through carbon nanotubes, but further research is needed to determine the exact transport mechanisms.

Another potential application for the membranes is in gas separation. The high gas permeability and its affinity to hydrocarbons may allow for lower-energy, industrial-gas separations. “Though our membranes have an order of magnitude smaller pore size, the enhanced flow rate per pore and the high pore density makes them superior in both air and water permeability compared to conventional polycarbonate membranes,” Bakajin said.

The research appears on the cover of the May 19 edition of the journal, Science.

####

About Lawrence Livermore National Laboratory:
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here.

Contact:
Anne M. Stark
(925) 422-9799
stark8@llnl.gov

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project