Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Colored diamonds are a superconductor’s best friend

The crystal lattice of a pure diamond is pure carbon (black balls), but when a nitrogen atom replaces one carbon and an adjacent carbon is kicked out, the ‘nitrogen-vacancy center’ becomes a sensitive magnetic field sensor.
The crystal lattice of a pure diamond is pure carbon (black balls), but when a nitrogen atom replaces one carbon and an adjacent carbon is kicked out, the ‘nitrogen-vacancy center’ becomes a sensitive magnetic field sensor.

Abstract:
Flawed but colorful diamonds are among the most sensitive detectors of magnetic fields known today, allowing physicists to explore the minuscule magnetic fields in metals, exotic materials and even human tissue.

Colored diamonds are a superconductor’s best friend

Berkeley, CA | Posted on March 6th, 2014

University of California, Berkeley, physicist Dmitry Budker and his colleagues at Ben-Gurion University of the Negev in Israel and UCLA have now shown that these diamond sensors can measure the tiny magnetic fields in high-temperature superconductors, providing a new tool to probe these much ballyhooed but poorly understood materials.

"Diamond sensors will give us measurements that will be useful in understanding the physics of high temperature superconductors, which, despite the fact that their discoverers won a 1987 Nobel Prize, are still not understood," said Budker, a professor of physics and faculty scientist at Lawrence Berkeley National Laboratory.

High-temperature superconductors are exotic mixes of materials like yttrium or bismuth that, when chilled to around 180 degrees Fahrenheit above absolute zero (-280ºF), lose all resistance to electricity, whereas low-temperature superconductors must be chilled to several degrees above absolute zero. When discovered 28 years ago, scientists predicted we would soon have room-temperature superconductors for lossless electrical transmission or magnetically levitated trains.

It never happened.

"The new probe may shed light on high-temperature superconductors and help theoreticians crack this open question," said coauthor Ron Folman of Ben-Gurion University of the Negev, who is currently a Miller Visiting Professor at UC Berkeley. "With the help of this new sensor, we may be able to take a step forward."

Budker, Folman and their colleagues report their success in an article posted online Feb. 18 in the journal Physical Review B.

Flawed but colorful

Colorful diamonds, ranging from yellow and orange to purple, have been prized for millennia. Their color derives from flaws in the gem's carbon structure: some of the carbon atoms have been replaced by an element, such as boron, that emits or absorbs a specific color of light.

Once scientists learned how to create synthetic diamonds, they found that they could selectively alter a diamond's optical properties by injecting impurities. In this experiment, Budker, Folman and their colleagues bombarded a synthetic diamond with nitrogen atoms to knock out carbon atoms, leaving holes in some places and nitrogen atoms in others. They then heated the crystal to force the holes, called vacancies, to move around and pair with nitrogen atoms, resulting in diamonds with so-called nitrogen-vacancy centers. For the negatively charged centers, the amount of light they re-emit when excited with light becomes very sensitive to magnetic fields, allowing them to be used as sensors that are read out by laser spectroscopy.

Folman noted that color centers in diamonds have the unique property of exhibiting quantum behavior, whereas most other solids at room temperature do not.

"This is quite surprising, and is part of the reason that these new sensors have such a high potential," Folman said.

Applications in homeland security?

Technology visionaries are thinking about using nitrogen-vacancy centers to probe for cracks in metals, such as bridge structures or jet engine blades, for homeland security applications, as sensitive rotation sensors, and perhaps even as building blocks for quantum computers.

Budker, who works on sensitive magnetic field detectors, and Folman, who builds ‘atom chips' to probe and manipulate atoms, focused in this work on using these magnetometers to study new materials.

"These diamond sensors combine high sensitivity with the potential for high spatial resolution, and since they operate at higher temperatures than their competitors - superconducting quantum interference device, or SQUID, magnetometers - they turn out to be good for studying high temperature superconductors," Budker said. "Although several techniques already exist for magnetic probing of superconducting materials, there is a need for new methods which will offer better performance."

The team used their diamond sensor to measure properties of a thin layer of yttrium barium copper oxide (YBCO), one of the two most popular types of high-temperatures superconductor. The Ben-Gurion group integrated the diamond sensor with the superconductor on one chip and used it to detect the transition from normal conductivity to superconductivity, when the material expels all magnetic fields. The sensor also detected tiny magnetic vortices, which appear and disappear as the material becomes superconducting and may be a key to understanding how these materials become superconducting at high temperatures.

"Now that we have proved it is possible to probe high-temperatures superconductors, we plan to build more sensitive and higher-resolution sensors on a chip to study the structure of an individual magnetic vortex," Folman said. "We hope to discover something new that cannot be seen with other technologies."

Researchers, including Budker and Folman, are attempting to solve other mysteries through magnetic sensing. For example, they are investigating networks of nerve cells by detecting the magnetic field each nerve cell pulse emits. In another project, they aim at detecting strange never-before-observed entities called axions through their effect on magnetic sensors.

Coauthors include Amir Waxman, Yechezkel Schlussel and David Groswasser of Ben-Gurion University of the Negev, UC Berkeley Ph.D. graduate Victor Acosta, who is now at Google [x] in Mountain View, Calif., and former UC Berkeley post-doc Louis Bouchard, now a UCLA assistant professor of chemistry and biochemistry.

The work was supported by the NATO Science for Peace program, AFOSR/DARPA QuASAR program, the National Science Foundation and UC Berkeley's Miller Institute for Basic Research in Science.

####

For more information, please click here

Contacts:
Robert Sanders

510-643-6998

Copyright © University of California, Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Diamond magnetometry of superconducting thin films (Physical Review B):

Dmitry Budker’s website:

Ron Folman’s Atom Chip lab:

Related News Press

Superconductivity

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Quantum Computing

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Harris & Harris Group Portfolio Company D-Wave Systems Closes a $28.4 Million Financing July 14th, 2014

Weizmann Institute scientists take another step down the long road toward quantum computers July 14th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Sensors

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Discoveries

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Materials/Metamaterials

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

From Narrow to Broad July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

From Narrow to Broad July 30th, 2014

Tools

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

New Objective Focusing Nanopositioner from nPoint July 30th, 2014

Homeland Security

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Aerospace/Space

National Space Society Calls For Less US Dependence On Russian Space Technology July 15th, 2014

Motorized Miniature Screw-Actuator Provides 20 nm Resolution, Based on Piezo Effect July 8th, 2014

NSS Pays Tribute to Space Pioneer Frederick I. Ordway III July 7th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

Construction

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Researchers Produce Protein Nanoparticles from Chicken Feather June 11th, 2014

Scientists Produce Self-Cleaning Coatings on Glass Substrate March 17th, 2014

Iran Applying Nanotechnology in Growing Number of Industries March 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE