Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical-

Abstract:
University of Central Florida researchers are making the cutting-edge field of attosecond science more accessible to researchers from all disciplines.

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical-

Orlando, FL | Posted on August 25th, 2020

Their method to help open up the field is detailed in a new study published today in the journal Science Advances.

An attosecond is one billionth of a billionth of a second, and the ability to make measurements with attosecond precision allows researchers to study the fast motion of electrons inside atoms and molecules at their natural time scale.

Measuring this fast motion can help researchers understand fundamental aspects of how light interacts with matter, which can inform efforts to harvest solar energy for power generation, detect chemical and biological weapons, perform medical diagnostics and more.

"One of the main challenges of attosecond science is that it relies on world-class laser facilities," says Michael Chini, an assistant professor in UCF's Department of Physics and the study's principal investigator. "We are fortunate to have one here at UCF, and there are probably another dozen worldwide. But unfortunately, none of them are truly operated as 'user facilities,' where scientists from other fields can come in and use them for research."

This lack of access creates a barrier for chemists, biologists, materials scientists and others who could benefit from applying attosecond science techniques to their fields, Chini says.

"Our work is a big step in the direction of making attosecond pulses more broadly accessible," Chini says.

"We show that industrial-grade lasers, which can be purchased commercially from dozens of vendors with a price tag of around $100,000, can now be used to generate attosecond pulses."

Chini says the setup is simple and can work with a wide variety of lasers with different parameters.

Attosecond science works somewhat like sonar or 3D laser mapping, but at a much smaller scale. When an attosecond light pulse passes through a material, the interaction with electrons in the material distorts the pulse. Measuring these distortions allows researchers to construct images of the electrons and make movies of their motion.

Typically, scientists have used complex laser systems, requiring large laboratory facilities and clean-room environments, as the driving lasers for attosecond science.

Producing the extremely short light pulses needed for attosecond research - essentially consisting of only a single oscillation cycle of an electromagnetic wave - has further required propagating the laser through tubes filled with noble gases, such as xenon or argon, to further compress the pulses in time.

But Chini's team has developed a way to get such few-cycle pulses out of more commonly available industrial-grade lasers, which previously could produce only much longer pulses.

They compress approximately 100-cycle pulses from the industrial-grade lasers by using molecular gases, such as nitrous oxide, in the tubes instead of noble gases and varying the length of the pulses they send through the gas.

In their paper, they demonstrate compression to only 1.6 cycles, and single-cycle pulses are within reach of the technique, the researchers say.

The choice of gas and duration of the pulses are key, says John Beetar, a doctoral student in UCF's Department of Physics and the study's lead author.

"If the tube is filled with a molecular gas, and in particular a gas of linear molecules, there can be an enhanced effect due to the tendency of the molecules to align with the laser field," Beetar says.

"However, this alignment-caused enhancement is only present if the pulses are long enough to both induce the rotational alignment and experience the effect caused by it," he says. "The choice of gas is important since the rotational alignment time is dependent on the inertia of the molecule, and to maximize the enhancement we want this to coincide with the duration of our laser pulses."

"The reduction in complexity associated with using a commercial, industrial-grade laser could make attosecond science more approachable and could enable interdisciplinary applications by scientists with little to no laser background," Beetar says.

###

Co-authors of the study also included M. Nrisimha Murty, a preeminent postdoctoral associate in UCF's Department of Physics; Tran-Chau Truong, a doctoral student in UCF's Department of Physics; Garima C. Nagar, a graduate student at Binghamton University; Yangyang Liu, a postdoctoral scholar in UCF's Department of Physics; Jonathan Nesper, a doctoral student in UCF's Department of Physics; Omar Suarez and Federico Rivas with UCF's Central Florida Physics Research Exchange Program; Yi Wu, a postdoctoral researcher with joint appointments in UCF's Department of Physics and UCF's College of Optics and Photonics; and Bonggu Shim, an associate professor of physics, applied physics and astronomy at Binghamton University.

Chini received his doctorate in physics from the University of Central Florida and his bachelor's in physics from McGill University. He has a secondary joint appointment in UCF's College of Optics and Photonics and joined UCF's Department of Physics, part of UCF's College of Sciences, in 2015.

####

For more information, please click here

Contacts:
Robert H Wells


@UCF

Copyright © University of Central Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

Having it Both Ways: A Combined Strategy in Catalyst Design for Suzuki Cross-Couplings December 2nd, 2020

The National Space Society Remembers Ben Bova : NSS Mourns the Loss of a Visionary NSS Leader December 2nd, 2020

Arrowhead Pharmaceuticals to Participate in Upcoming Conferences December 2nd, 2020

Govt.-Legislation/Regulation/Funding/Policy

New platform generates hybrid light-matter excitations in highly charged graphene December 2nd, 2020

CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics December 1st, 2020

NIST sensor experts invent supercool mini thermometer November 17th, 2020

Arrowhead Interim Clinical Data Demonstrate ARO-AAT Treatment Improved Multiple Biomarkers of Alpha-1 Liver Disease November 13th, 2020

Possible Futures

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

Having it Both Ways: A Combined Strategy in Catalyst Design for Suzuki Cross-Couplings December 2nd, 2020

New platform generates hybrid light-matter excitations in highly charged graphene December 2nd, 2020

CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics December 1st, 2020

Discoveries

No nanoparticle risks to humans found in field tests of spray sunscreens December 2nd, 2020

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

Having it Both Ways: A Combined Strategy in Catalyst Design for Suzuki Cross-Couplings December 2nd, 2020

New platform generates hybrid light-matter excitations in highly charged graphene December 2nd, 2020

Announcements

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

Having it Both Ways: A Combined Strategy in Catalyst Design for Suzuki Cross-Couplings December 2nd, 2020

The National Space Society Remembers Ben Bova : NSS Mourns the Loss of a Visionary NSS Leader December 2nd, 2020

Arrowhead Pharmaceuticals to Participate in Upcoming Conferences December 2nd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

No nanoparticle risks to humans found in field tests of spray sunscreens December 2nd, 2020

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

Having it Both Ways: A Combined Strategy in Catalyst Design for Suzuki Cross-Couplings December 2nd, 2020

New platform generates hybrid light-matter excitations in highly charged graphene December 2nd, 2020

Homeland Security

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

RIT researchers build micro-device to detect bacteria, viruses: New process improves lab-on-chip devices to isolate drug-resistant strains of bacterial infection, viruses April 17th, 2020

Nanomaterial fabric destroys nerve agents in battlefield-relevant conditions: Metal-organic framework-based composites don’t need liquid water to work January 14th, 2020

A bullet-proof heating pad November 2nd, 2018

Energy

CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics December 1st, 2020

One-way street for electrons: Scientists observe directed energy transport between neighbouring molecules in a nanomaterial November 27th, 2020

Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020

CEA-Leti to Build Quantum-Photonics Platform to Ensure Ultra-Secure Data for Finance, Energy, Defense and Other Industries : Project Will Build Demonstrators for Transmitting and Receiving Qubits and Focus on Integrating the Technology in a Unique Platform to Address Quantum Comp October 30th, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New platform generates hybrid light-matter excitations in highly charged graphene December 2nd, 2020

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

NSF renews Rice-based NEWT Center for water treatment: Partnership primed to introduce game-changing technologies to address global needs October 15th, 2020

Photonics/Optics/Lasers

New platform generates hybrid light-matter excitations in highly charged graphene December 2nd, 2020

Order in the disorder: density fluctuations in amorphous silicon discovered October 30th, 2020

CEA-Leti to Build Quantum-Photonics Platform to Ensure Ultra-Secure Data for Finance, Energy, Defense and Other Industries : Project Will Build Demonstrators for Transmitting and Receiving Qubits and Focus on Integrating the Technology in a Unique Platform to Address Quantum Comp October 30th, 2020

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project