Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > RIT researchers build micro-device to detect bacteria, viruses: New process improves lab-on-chip devices to isolate drug-resistant strains of bacterial infection, viruses

An enlarged image of the different bioparticles found in a specimen including the micro-beads to better isolate bacteria.
An enlarged image of the different bioparticles found in a specimen including the micro-beads to better isolate bacteria.

Abstract:
Engineering researchers developed a next-generation miniature lab device that uses magnetic nano-beads to isolate minute bacterial particles that cause diseases. Using this new technology improves how clinicians isolate drug-resistant strains of bacterial infections and difficult-to-detect micro-particles such as those making up Ebola and coronaviruses.

RIT researchers build micro-device to detect bacteria, viruses: New process improves lab-on-chip devices to isolate drug-resistant strains of bacterial infection, viruses

Rochester, NY | Posted on April 17th, 2020

Ke Du and Blanca Lapizco-Encinas, both faculty-researchers in Rochester Institute of Technology's Kate Gleason College of Engineering, worked with an international team to collaborate on the design of the new system--a microfluidic device, essentially a lab-on-a-chip.

Drug-resistant bacterial infections are causing hundreds of thousands of deaths around the world every year, and this number is continuously increasing. Based on a report from the United Nations, the deaths caused by antibiotics resistance could reach to 10 million annually by 2050, Du explained.

"It is urgent for us to better detect, understand, and treat these diseases. To provide rapid and accurate detection, the sample purification and preparation is critical and essential, that is what we are trying to contribute. We are proposing to use this novel device for virus isolation and detection such as the coronavirus and Ebola," said Du, an assistant professor of mechanical engineering whose background is in development of novel biosensors and gene editing technology.

The lab team is interested in the detection of bacterial infection, especially in bodily fluids. One of the major problems for detection is how to better isolate higher concentrations of pathogens.

The device is a sophisticated lab environment that can be used in field hospitals or clinics and should be much faster at collecting and analyzing specimens than the commercially available membrane filters. Its wide, shallow channels trap small bacteria molecules that are attracted to packed, magnetic microparticles.

This combination of the deeper channels on the nano-device, increased flow rate of fluids where bacteria are suspended, and the inclusion of magnetic beads along the device channels improves upon the process of capturing/isolating bacterial samples. Researchers were able to successfully isolate bacteria from various fluids with a microparticle-based matrix filter. The filter trapped particles in small voids in the device, providing a larger concentration of bacteria for analysis. An added advantage of a smaller device such as this allows for multiple samples to be tested at the same time.

"We can bring this portable device to a lake which has been contaminated by E. coli. We will be able to take a few milliliters of the water sample and run it through our device so the bacteria can be trapped and concentrated. We can either quickly detect these bacteria in the device or release them into certain chemicals to analyze them," said Du, whose earlier work focused on devices that use the CRISPR gene-editing technology and the fundamental understanding of fluidic dynamics.

Teaming up with Lapizco-Encinas, a biomedical engineer with expertise in dielectrophoresis--a process that uses electrical current to separate biomolecules--their collaboration provided the increased capability toward better pathogen detection, specifically for bacteria and microalgae isolation and concentration.

"Our goal is not only isolating and detecting bacteria in water and human plasma, but also working with whole blood samples to understand and detect blood infection such as sepsis. We already have a concrete plan for that. The idea is to use a pair of the nano-sieve devices for sequential isolation," said Lapizco-Encinas, an associate professor in RIT's biomedical engineering department.

Du and Lapizco-Encinas were part of a team that consisted of mechanical and biomedical engineers from Rutgers, University of Alabama, SUNY Binghamton, and Tsinghua-Berkeley Shenzhen Institute in China to address the global challenges of disease pandemics. The new data is published in the article "Rapid Escherichia coli trapping and retrieval for bodily fluids via a three-dimensional bead-stacked nano-device," in the journal ACS Applied Materials and Interfaces.

The research team is RIT engineering doctoral and graduate students Xinye Chen, Abbi Miller and Qian He; University of Alabama assistant professor of electrical and computer engineering Yu Gan and undergraduate student Shengting Cao; Ruo-Qian Wang, assistant professor of civil and environmental engineering from Rutgers University; Xin Yong, assistant professor of mechanical engineering from SUNY Binghamton; Peiwu Qin from the Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, China; and Jie Zhang, Carollo Engineers Inc. in Seattle.

####

For more information, please click here

Contacts:
Michelle Cometa

585-512-9187

@ritnews

Copyright © Rochester Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Single quantum bit achieves complex systems modeling June 9th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Graphene-based Carbocatalysts: Synthesis, Properties, and Applications—Beyond Boundaries June 9th, 2023

Lab-on-a-chip

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

Silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm March 13th, 2020

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Trapping and moving tiny particles using light September 24th, 2019

Possible Futures

USTC enhances fluorescence brightness of single silicon carbide spin color centers June 9th, 2023

Single quantum bit achieves complex systems modeling June 9th, 2023

Advances in nanotechnology application in biosafety materials A crucial response to COVID-19 pandemic June 9th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Nanomedicine

Zinc transporter has built-in self-regulating sensor: New cryo-EM structure of a zinc-transporter protein reveals how this molecular machine functions to regulate cellular levels of zinc, an essential micronutrient June 9th, 2023

Advances in nanotechnology application in biosafety materials A crucial response to COVID-19 pandemic June 9th, 2023

Nanonitrator: novel enhancer of inorganic nitrate protective effects, predicated on swarm learning approach May 12th, 2023

Nanobiotechnology: How Nanomaterials Can Solve Biological and Medical Problems April 14th, 2023

Discoveries

Zinc transporter has built-in self-regulating sensor: New cryo-EM structure of a zinc-transporter protein reveals how this molecular machine functions to regulate cellular levels of zinc, an essential micronutrient June 9th, 2023

When all details matter -- Heat transport in energy materials June 9th, 2023

Advances in nanotechnology application in biosafety materials A crucial response to COVID-19 pandemic June 9th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Announcements

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Graphene-based Carbocatalysts: Synthesis, Properties, and Applications—Beyond Boundaries June 9th, 2023

Zinc transporter has built-in self-regulating sensor: New cryo-EM structure of a zinc-transporter protein reveals how this molecular machine functions to regulate cellular levels of zinc, an essential micronutrient June 9th, 2023

When all details matter -- Heat transport in energy materials June 9th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

USTC enhances fluorescence brightness of single silicon carbide spin color centers June 9th, 2023

Single quantum bit achieves complex systems modeling June 9th, 2023

Advances in nanotechnology application in biosafety materials A crucial response to COVID-19 pandemic June 9th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Homeland Security

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Nanomaterial fabric destroys nerve agents in battlefield-relevant conditions: Metal-organic framework-based composites don’t need liquid water to work January 14th, 2020

Military

With new experimental method, researchers probe spin structure in 2D materials for first time: By observing spin structure in “magic-angle” graphene, a team of scientists led by Brown University researchers have found a workaround for a long-standing roadblock in the field of two May 12th, 2023

New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Nanobiotechnology

Nanonitrator: novel enhancer of inorganic nitrate protective effects, predicated on swarm learning approach May 12th, 2023

Nanobiotechnology: How Nanomaterials Can Solve Biological and Medical Problems April 14th, 2023

Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023

HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project