Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanofibrous metal oxide semiconductor for sensory face

IGZO nanofibre-based sensors are integrated with a flexible circuit to create a sensory face mask, thus featuring wireless and real-time monitoring capabilities.

Credit
Qing, M., et al.
IGZO nanofibre-based sensors are integrated with a flexible circuit to create a sensory face mask, thus featuring wireless and real-time monitoring capabilities. Credit Qing, M., et al.

Abstract:
Room-temperature (RT) gas sensors with high sensitivity are essential in low-power Internet-of-Things (IoT) applications, such as smart sensors, wearable devices and mobile robots. Among these, metal oxide semiconductor-based gas sensors are valued for their low production cost, high sensitivity and ease of use, making them suitable for detecting flammable, explosive, toxic, and exhaled gases. However, further fiber diameter reduction and real-time monitoring integration remain underexplored.

Nanofibrous metal oxide semiconductor for sensory face

Beijing, China | Posted on November 8th, 2024

In a study published in the KeAi journal Wearable Electronics, a group of researchers from China and South Korea described a new sensor they have developed — ultrathin (~88 nm) amorphous indium gallium zinc oxide (IGZO) nanofibres for wireless and real-time human breath monitoring.

"IGZO nanofibres were created as the charge transport layer to enhance the surface area for gas diffusion using an electrospinning approach,” explains the study's lead author, Qing Ma, a post-doctoral fellow at the School of Electronic Science and Engineering at Southeast University. “The resulting field-effect properties demonstrated an average mobility of 2.2 cm²/V·s and an on/off ratio of 10⁵.”

Notably, the team successfully recorded human breath in fast, normal and deep states, showing the sensor’s fast response and recovery times and stable operation. “By integrating the sensor with a flexible circuit board and mounting them on a face mask, we achieved wireless and real-time monitoring of respiratory status, highlighting its potential for practical applications in health monitoring,” says Ma.

The researchers also found that electrical transport in IGZO nanofibres is driven by oxygen vacancies, water vapor and temperature significantly affect its conductivity. When a voltage is applied, the sensor’s current significantly decreases and quickly recovers during a breath cycle, with a fast response and recovery time of approximately 0.7 seconds.

According to senior and co-corresponding author Binghao Wang, this is a promising solution in the field of personalised healthcare and pandemic prevention.

“An IGZO NF-based sensor integrated into a flexible circuit achieved a compact size of 15 × 35 mm², marking significant progress in the miniaturisation efforts for smart mask technology,” says Wang. “The recorded electrical signals can be visualised via a smartphone equipped with a customised mobile app, underscoring the potential for the widespread adoption of IGZO TFT-based sensors in wearable technology."

####

About KeAi Communications Co., Ltd.
The publisher KeAi was established by Elsevier and China Science Publishing & Media Ltd to unfold quality research globally. In 2013, our focus shifted to open access publishing. We now proudly publish more than 100 world-class, open access, English language journals, spanning all scientific disciplines. Many of these are titles we publish in partnership with prestigious societies and academic institutions, such as the National Natural Science Foundation of China (NSFC).

For more information, please click here

Contacts:
Ye He
KeAi Communications Co., Ltd.

Office: 521-098-1577

Contact the author: Binghao Wang, School of Electronic Science and Engineering, Southeast University, No. 2 Southeast University Road, Jiangning, Nanjing, Jiangsu 211189, China.

Haoyang Wang, School of Electronic Science and Engineering, Southeast University, No. 2 Southeast University Road, Jiangning, Nanjing, Jiangsu 211189, China.

Copyright © KeAi Communications Co., Ltd.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article Title

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Wearable electronics

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023

Robotics

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

Femtosecond laser technique births "dancing microrobots": USTC's breakthrough in multi-material microfabrication August 11th, 2023

Internet-of-Things

New nanowire sensors are the next step in the Internet of Things January 6th, 2023

New chip ramps up AI computing efficiency August 19th, 2022

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Chip Technology

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Sensors

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project