Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Lightening up the nanoscale long-wavelength optoelectronics

a, Schematics of the bow-tie antenna-assisted device. b, The cross-section view of the simulated electric field intensity normalized to incident one marks the power-gain around the nanochannel at 0.3 THz electromagnetic waves. c, The scaling of electric field enhancement derived from FDTD method versus channel length and incident frequency. d, Asymmetric ultrashort channel was fabricated by tilt deposition. e, The near-field images are taken around the slit area using broadband illumination. f, Stereograph of the near-field signal.

CREDIT
by Lin Wang, Li Han, Wanlong Guo, Libo Zhang, Chenyu Yao, Zhiqingzi Chen, Yulu Chen, Cheng Guo, Kaixuan Zhang, Chia-Nung Kuo, Chin Shan Lue, Antonio Politano, Huaizhong Xing, Mengjie Jiang, Xianbin Yu, Xiaoshuang Chen, and Wei Lu
a, Schematics of the bow-tie antenna-assisted device. b, The cross-section view of the simulated electric field intensity normalized to incident one marks the power-gain around the nanochannel at 0.3 THz electromagnetic waves. c, The scaling of electric field enhancement derived from FDTD method versus channel length and incident frequency. d, Asymmetric ultrashort channel was fabricated by tilt deposition. e, The near-field images are taken around the slit area using broadband illumination. f, Stereograph of the near-field signal. CREDIT by Lin Wang, Li Han, Wanlong Guo, Libo Zhang, Chenyu Yao, Zhiqingzi Chen, Yulu Chen, Cheng Guo, Kaixuan Zhang, Chia-Nung Kuo, Chin Shan Lue, Antonio Politano, Huaizhong Xing, Mengjie Jiang, Xianbin Yu, Xiaoshuang Chen, and Wei Lu

Abstract:
Recent years have witnessed rapid development of the infrared photoelectric technology and the growth-up of the format of focal plane array, integration methods, as well as the spectral regime, and has widely implemented in fields including environmental resources exploration, military defenses, space science, and in the near future the field of artificial interconnect of things (AIoT) bench for communication and sensing of all things. However, with the diversity of the environment and the complexity of the features of hidden targets, the short-wave infrared detection is disturbed by the varying environmental conditions. Expanding the wavelength range of infrared detection to cover the electromagnetic spectrum from 30 μm to 3000 μm is of great significance for upgrading the capacity of optoelectronic system, such as all-weather monitoring, target recognition in complex conditions, remote sensing and spectroscopy, as well as security-screening. Existing infrared detection materials and devices are limited by intrinsic dark current and operating temperature, which mainly work in the wavelength below 20 μm under stringent cooling condition, and confront huge-challenges in wavelength extension in terms of refrigeration, power consumption, bulky, and difficulty in high-quality material growth. Therefore, there is an urgent requirement to explore novel materials and device structure beyond traditional routes to meet miniaturized technologies development with room temperature working capability, low-power consumption, and long-wavelength detection.

Lightening up the nanoscale long-wavelength optoelectronics

Changchun, China | Posted on May 13th, 2022

In a new paper published in Light Science & Application, a team of scientists, led by Professor Lin Wang from State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, China, and co-workers have explored a topological semimetal-based photodetector for effectively capturing low-energy photons. Combining multiple detection mechanisms, they developed a hybrid Dirac semimetal photodetector with strong interaction at deep-subwavelength regime of ultrashort-channel and efficient photon-conversion led by symmetry engineering. The superior low-energy band topology of Dirac semimetal and peculiar non-equilibrium manipulation, enable the rectification of terahertz signals in the nanometric regime at room temperature. It is worth mentioning that the device possesses excellent environmental stability, and the photocurrent is efficiently generated across wide spectral regime beyond traditional optical technique. The reported method and technique will open up new possibilities for the facile realization of portable room-temperature low-photon detectors with high sensitivity, fast operation, and low NEP, which have significant advantages over the existing technologies.



The detector integrates PtSe2-class type-II Dirac semimetal as the channel material, and is fully optimized in terms of antenna structure, heterogeneous integration, and unbalanced electrodes. It has excellent detection performance for low-energy photons at room temperature, with responsivity exceeding ∼0.2 A/W and noise-equivalent power (NEP) less than ~38 pW/Hz0.5, as well as superb ambient stability. These scientists summarize the operational principle of their photodetector:

“We provide an alternative photodetecion strategy by efficiently integrating and manipulating at the nanoscale the optoelectronic properties of topological Dirac semimetal PtSe2 and its van der Waals heterostructures, based on the following three principles: (1) Our discovery reveals the achieve stronger light-matter interaction beyond the skin depth regime, which is achieved by titled self-aligned technique; (2) Spontaneous photocurrent is versatile manipulated by breaking the the symmetry of the in-plane barrier, so that the carriers can flow in one direction; (3) To suppress the dark current and achieve room temperature rectification, a PtSe2-graphene heterojunction was constructed benefiting from congenital nature of the van der Waals interaction.” Said Prof. Wang, the first author of the work.



“The asymmetrical electrodes forming the nanoscale photoactive region can funnel efficiently the low-energy photons and enable intensive field enhancement, giving rise to a Seebeck electromotive force and a preferential flow of nonequilibrium hot carriers. The maximum responsivity can reach 0.2A/W at zero bias.” they added.



“Considering the superior ambient stability and the excellent potential for scalable synthesis of PtSe2, our work opens new possibilities for the facile realization of portable room-temperature, low-photon detectors, with high sensitivity, fast operation, and low NEP, with great advantages compared to current technologies. It is expected to break through the bottleneck of traditional low-energy photon detection.” the scientists forecast.

####

For more information, please click here

Contacts:
Yaobiao Li
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

Office: 86-431-861-76851
Expert Contact

Lin Wang
Shanghai Institute of Technical Physics, Chinese Academy of Sciences

Copyright © Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Detecting breast cancer through a spit test February 16th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Internet-of-Things

New nanowire sensors are the next step in the Internet of Things January 6th, 2023

New chip ramps up AI computing efficiency August 19th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Govt.-Legislation/Regulation/Funding/Policy

New chip opens door to AI computing at light speed February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Possible Futures

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Detecting breast cancer through a spit test February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Optical computing/Photonic computing

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Thermal impact of 3D stacking photonic and electronic chips: Researchers investigate how the thermal penalty of 3D integration can be minimized December 8th, 2023

Discoveries

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Superbug killer: New synthetic molecule highly effective against drug-resistant bacteria February 16th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Announcements

Detecting breast cancer through a spit test February 16th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Detecting breast cancer through a spit test February 16th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Military

New chip opens door to AI computing at light speed February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Photonics/Optics/Lasers

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project