Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Light meets deep learning: computing fast enough for next-gen AI

A team of Greek academic researchers and California entrepreneurs benchmarked their Silicon Photonic (SiPho) neural network technology against processing unit currently on the market and six-year-old technology with projections.

CREDIT
Authors of publication
A team of Greek academic researchers and California entrepreneurs benchmarked their Silicon Photonic (SiPho) neural network technology against processing unit currently on the market and six-year-old technology with projections. CREDIT Authors of publication

Abstract:
Artificial intelligence (AI) models are essential for sophisticated image classification, the most important part of digital analysis. The researchers who recently published “Universal Linear Optics Revisited: New Perspectives for Neuromorphic Computing with Silicon Photonics” have moved the needle for image classification. The speeds they’ve achieved on a new chip platform (silicon photonics) using the computational power of neural networks is impressive.

Light meets deep learning: computing fast enough for next-gen AI

Piscataway, NJ | Posted on March 24th, 2023

Nonetheless, pay attention here to the modal auxiliary verb “can.” Just because something can be done, questions remain. Will it be fast enough? Will it have sufficient accuracy? How energy efficient is it? Is the chip large and unwieldly? This research tackles them all.

One of the attributes of AI is that you can use it at the edge of the physical network; in a camera for example. A camera on a drone is an even better example. To enable a drone with AI, you want the on-board AI chip to be powerful, but energy efficient, small and lightweight, and able to do lots of complex math at lightning speed. That way, the drone can alert humans when something untoward is detected (cancer, a saboteur, damage to a train-track).

Meanwhile, in Greece, researchers have built a neuromorphic photonic processor computing at a speed of 50 GHz that is capable to classify images with ~95% accuracy. Let’s break this down, starting with the photonic part.

After Silicon Electronics? Silicon Photonics.

AI processor chips often start life as graphic processing units (GPUs) for high-end video games or tensor processing units (TPUs) which are specifically designed for neural networks, meaning computation mimicking the human brain. (Except that they like linear algebra!) However conventional processors use silicon electronics as the physical platform, which is reaching quantum limitations.

Switching from electrons to photons increases computational ability because the speed of light is so much faster than the speed of electrons. It’s more energy efficient too. The “wires” don’t heat up. The physics of light can be used for matrix-vector multiplication operations, the computational backbone of neural networks.

After Conventional Math? Neuromorphic Computing with Trillions of Operations per Second

Now the neuromorphic part. The Greek research team, along with Celestial AI, developed a novel design for the chip using a crossbar layout. The layout outperforms the state-of-the-art photonic counterparts in terms of scalability, technical versatility, ease of programming and error tolerance. Said differently, by combining the crossbar layout’s architectural benefits with SiGe electro-absorption modulators employed in their first prototype, the researchers project that a purely optical implementation can perform trillions of matrix-vector multiplications per second, without sacrificing the processing accuracy, while consuming very low power.

Compared with six years ago, silicon photonics is in a much better position to pull neural morphic processors from their currently low computational and physical size (footprint) efficiency to less unwieldy. Notice in Figure 1 the placement of IBM’s TrueNorth chip, Intel’s Loihi chip, the HICANN (High Input Count Analog Neural Network) chip from Germany’s Heidelberg University and Stanford U’s neurogrid device. Compare it to the crossbar-layout chips discussed here, which are falling right along silicon photonics roadmap in terms of computation and size efficiency. The synergy of powerful photonics with the novel crossbar architecture can enable next generation neuromorphic computing engines. Let’s change that that modal auxiliary verb to “will.”

####

For more information, please click here

Contacts:
Media Contact

Kristen Mahan
Institute of Electrical and Electronics Engineers

Expert Contact

Kristen Mahan
IEEE

Office: 17322723320

Copyright © Institute of Electrical and Electronics Engineers

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Possible Futures

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Chip Technology

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Optical computing/Photonic computing

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Discoveries

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Artificial Intelligence

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project