Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications

Abstract:
The University of Strathclyde and the National University of Singapore (NUS) have signed a memorandum of understanding (MoU) on satellite quantum communications, to pave the way for increased joint experiments between the institutions.

University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications

Glasgow, UK | Posted on May 13th, 2022

Under the agreement, the universities will coordinate so that optical ground stations used by the institutions are able to receive signals from satellites operated by each other.

The MoU is designed to build an international team that shares a consensus on the range of wavelengths used in quantum communications experiments from satellites. Frequency coordination efforts of this kind are regularly carried out in conventional communications.

Enhanced communication between the universities’ respective satellites and ground stations will strengthen partnerships in quantum research between the universities.

Dr Daniel Oi, Senior Lecturer in Strathclyde’s Department of Physics, said: “This is a tremendous opportunity to demonstrate truly global communications secured through quantum means.”

Associate Professor Alexander Ling, a Principal Investigator at the Centre for Quantum Technologies (CQT) at NUS, said: “Through this MoU, we will ensure that our respective satellites and ground stations can talk to each other so that we can do joint work on quantum communication.”

Previously, Dr Oi and Professor Ling collaborated to develop quantum entangled photon sources suitable for satellites, to translate laboratory systems into miniaturised components capable of functioning under the harsh conditions of launch and orbit, and to enable the development of space quantum technologies.

CubeSats, a standard type of nanosatellite made of multiples of 10 cm × 10 cm × 10 cm cubic units, were used for the rapid development and testing of devices and systems at a much faster rate and lower cost than traditional space engineering programmes. The team’s work culminated in the launch of the nanosatellite SpooQy-1 in 2019. This work has inspired similar CubeSat space quantum technology projects worldwide.

A Quantum Technology Cluster is embedded in the Glasgow City Innovation District, an initiative driven by Strathclyde along with Glasgow City Council, Scottish Enterprise, Entrepreneurial Scotland and Glasgow Chamber of Commerce. It is envisaged as a global place for quantum industrialisation, attracting companies to co-locate, accelerate growth, improve productivity and access world-class research technology and talent at Strathclyde.

The University of Strathclyde is the only academic institution that has been a partner in all four EPSRC funded Quantum Technology Hubs in both phases of funding. The Hubs are in: Sensing and Timing; Quantum Enhanced Imaging; Quantum Computing and Simulation, and Quantum Communications Technologies.

Strathclyde leads, and CQT at NUS is a member of, the International Network in Space Quantum Technologies, which tackles the challenges of taking terrestrial quantum technologies into space. It is developing satellite-enabled quantum-secure communication, quantum sensing and timing, with applications in combating climate change, space weather forecasting, satellite navigation, extra-terrestrial surveying, fundamental science and enabling a quantum internet.

####

For more information, please click here

Contacts:
Paul Gallagher
University of Strathclyde

Office: 0044-141-548-2370
Cell: 07969 045919

Copyright © University of Strathclyde

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Possible Futures

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Announcements

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Environment

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Water processing: light helps degrade hormones: KIT researchers use polymer membranes coated with titanium dioxide for photocatalytic cleaning – results are reported in Nature Nanotechnology April 22nd, 2022

National Cheng Kung University researchers present new solution for wastewater remediation: The new eco-friendly nanocomposite hydrogels can be reused many times to adsorb ionic pollutants from wastewater April 15th, 2022

New approach can predict pollution from cooking emissions April 15th, 2022

Aerospace/Space

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Studying atomic structure of aluminum alloys for manufacturing modern aircraft March 25th, 2022

Alliances/Trade associations/Partnerships/Distributorships

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

CEA and Startup C12 Join Forces to Develop Next-Generation Quantum Computers with Multi-Qubit Chips at Wafer Scale March 25th, 2022

CEA and Spectronite Develop Software Radio For Spectrally Efficient Backhaul Solutions: Adapted for Spectronite’s X-Series Modem for 5G Systems, the Technology Enables Carrier Aggregation that Provides Radio Links with 10Gb/s Capacity March 4th, 2022

Research partnerships

New technology helps reveal inner workings of human genome June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Undergrads begin summer quantum research with support from Moore Foundation, Chicago region universities, national labs: Inaugural cohort of students join quantum research labs around the Midwest, planting the seeds for a diverse and inclusive quantum workforce June 17th, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project