Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Development of low-power and high-efficiency artificial sensory neurons: 3T-OTS device to simulate the efficient information processing method of the human brain. A green light for the development of sensor-AI combined next-generation artificial intelligence “to be used in life a

Distinguishing COVID-19 infection through image learning of chest X-rays

CREDIT
Korea Institute of Science and Technology
Distinguishing COVID-19 infection through image learning of chest X-rays CREDIT Korea Institute of Science and Technology

Abstract:
Currently, AI services spread rapidly in daily life and in all industries. These services are enabled by connecting AI centers and terminals such as mobile devices, PCs, etc. This method, however, increases the burden on the environment by consuming a lot of power not only to drive the AI ​​system but also to transmit data. In times of war or disasters, it may become useless due to the power collapse and network failures, the consequences of which may be even more serious if it is an AI service in the life and safety field. As a next-generation artificial intelligence technology that can overcome these weaknesses, low-power and high-efficiency 'in-sensor computing' technology that mimics the information processing mechanism of the human nervous system is drawing attention

Development of low-power and high-efficiency artificial sensory neurons: 3T-OTS device to simulate the efficient information processing method of the human brain. A green light for the development of sensor-AI combined next-generation artificial intelligence “to be used in life a

Yeongi-gun, South Korea | Posted on April 8th, 2022

The Korea Institute of Science and Technology (KIST, President Seok-Jin Yoon) announced that its team led by Dr. Suyoun Lee (Center for Neuromorphic Engineering) has succeeded in developing ‘artificial sensory neurons’ that will be the key to the practical use of in-sensor computing. Neurons refine vast external stimuli (received by sensory organs such as eyes, nose, mouth, ears, and skin) into information in the form of spikes; and therefore, play an important role in enabling the brain to quickly integrate and perform complex tasks such as cognition, learning, reasoning, prediction, and judgment with little energy.

The Ovonic threshold switch (OTS) is a two-terminal switching device that maintains a high resistance state (10-100 MΩ) below the switching voltage, and exhibits a sharp decrease in resistance above the switching voltage. In a precedent study, the team developed an artificial neuron device that mimics the action of neurons (integrate-and-fire) that generates a spike signal when the input signal exceeds a specific intensity.

This study, furthermore, introduces a 3-terminal Ovonic Threshold Switch (3T-OTS) device that can control the switching voltage in order to simulate the behavior of neurons and quickly find and abstract patterns among vast amounts of data input to sensory organs. By connecting a sensor to the third electrode of the 3T-OTS device, which converts external stimuli into voltage, it was possible to realize a sensory neuron device that changes the spike patterns according to the external stimuli.

The research team succeeded in realizing an artificial visual neuron device that mimics the information processing method of human sensory organs, by combining a 3T-OTS and a photodiode. In addition, by connecting an artificial visual neuron device with an artificial neural network that mimics the visual center of the brain, the team could distinguish COVID-19 infections from viral pneumonia with an accuracy of about 86.5% through image learning of chest X-rays.

Dr Suyoun Lee, Director of the KIST Center for Neuromorphic Engineering, said, “This artificial sensory neuron device is a platform technology that can implement various sensory neuron devices such as sight and touch, by connecting with existing sensors. It is a crucial building block for in-sensor computing technology.” He also explained the significance of the research that “will make a great contribution to solving various social problems related to life and safety, such as, developing a medical imaging diagnostic system that can diagnose simultaneously with examinations, predicting acute heart disease through time-series pattern analysis of pulse and blood pressure, and realizing extrasensory ability to detect vibrations outside the audible frequency to prevent building collapse accidents, earthquakes, tsunamis, etc.”.

####

About National Research Council of Science & Technology
KIST was established in 1966 as the first government-funded research institute to establish a national development strategy based on science and technology and disseminate various industrial technologies to develop major industries. KIST is now raising Korean science and technology status through world-leading innovative research and development.

This work was supported by the KIST Institutional Program, as well as by the Future Semiconductor New Device Source Technology Development Program and the Next Generation Intelligence Semiconductor Technology Development Program funded by the Ministry of Science and ICT(Minister: Lim, Hyesook). The research results were published in the latest issue of the ‘Nano Letters' (IF: 11.189, top 9.062% of the JCR field), an authoritative journal in the fields of nanoscience and nanotechnology.

For more information, please click here

Contacts:
Young Mi Kim
National Research Council of Science & Technology

Office: 82-442-877-376
Expert Contacts

Dr. Lee, Suyoun
Korea Institute of Science and Technology

Office: +82-2-958-6679
Lee, Yeeun (PR Department)
Korea Institute of Science and Technology

Office: +82-2-958-6929

Copyright © National Research Council of Science & Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Possible Futures

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Sensors

Spin photonics to move forward with new anapole probe November 4th, 2022

New $1.25 million research project will map materials at the nanoscale: The work can lead to new catalysts and other compounds that could be applicable in a range of areas including quantum science, renewable energy, life sciences and sustainability October 28th, 2022

Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers October 14th, 2022

Taking salt out of the water equation October 7th, 2022

Discoveries

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Artificial Intelligence

New chip ramps up AI computing efficiency August 19th, 2022

Artificial Intelligence Centered Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics June 3rd, 2022

‘Nanomagnetic’ computing can provide low-energy AI, researchers show May 6th, 2022

Artificial neurons go quantum with photonic circuits: Quantum memristor as missing link between artificial intelligence and quantum computing March 25th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project